Organic-inorganic nanocomposite organogel with double-network topology for enhanced mechanical and dielectric properties

Dongdong Yan , Shilei Zhu , Hongyao Zhao , Shanhao Feng , Beibei Kang , Xin Yang , Yanjing Zhang , Zhuangzhuang Li , Wenwen Yu , Ya Nan Ye
{"title":"Organic-inorganic nanocomposite organogel with double-network topology for enhanced mechanical and dielectric properties","authors":"Dongdong Yan ,&nbsp;Shilei Zhu ,&nbsp;Hongyao Zhao ,&nbsp;Shanhao Feng ,&nbsp;Beibei Kang ,&nbsp;Xin Yang ,&nbsp;Yanjing Zhang ,&nbsp;Zhuangzhuang Li ,&nbsp;Wenwen Yu ,&nbsp;Ya Nan Ye","doi":"10.1016/j.supmat.2025.100112","DOIUrl":null,"url":null,"abstract":"<div><div>Conventional artificial nanocomposites often rely on simple blending, which can lead to agglomeration and interfacial incompatibility between the organic and inorganic phases. In contrast, natural mineralized tissues like bone and teeth exhibit outstanding mechanical performance through nanoscale, interpenetrating organic-inorganic networks. Inspired by these naturally integrated architectures, we report a double-network (DN) organic-inorganic organogel composite formed by topologically interweaving self-assembled polyoxometalate sub-nanowires (SNWs) with a poly(tert‑butyl acrylate) (PtBA) matrix. The SNWs feature sub-nanometer diameters and flexibility similar to polymer chains, enabling them to form an inorganic network that seamlessly integrates with the organic phase. This continuous, interpenetrating DN structure enhanced key mechanical properties—including tensile strength, stiffness, and toughness—while simultaneously regulating dielectric properties such as dielectric permittivity and electrical breakdown strength, yielding a versatile, multifunctional platform. Overall, this design strategy paves the way for bioinspired advanced materials that merge mechanical robustness with customizable functionalities derived from inorganic components, promising applications in flexible electronics and functional structural materials.</div></div>","PeriodicalId":101187,"journal":{"name":"Supramolecular Materials","volume":"4 ","pages":"Article 100112"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Supramolecular Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667240525000212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional artificial nanocomposites often rely on simple blending, which can lead to agglomeration and interfacial incompatibility between the organic and inorganic phases. In contrast, natural mineralized tissues like bone and teeth exhibit outstanding mechanical performance through nanoscale, interpenetrating organic-inorganic networks. Inspired by these naturally integrated architectures, we report a double-network (DN) organic-inorganic organogel composite formed by topologically interweaving self-assembled polyoxometalate sub-nanowires (SNWs) with a poly(tert‑butyl acrylate) (PtBA) matrix. The SNWs feature sub-nanometer diameters and flexibility similar to polymer chains, enabling them to form an inorganic network that seamlessly integrates with the organic phase. This continuous, interpenetrating DN structure enhanced key mechanical properties—including tensile strength, stiffness, and toughness—while simultaneously regulating dielectric properties such as dielectric permittivity and electrical breakdown strength, yielding a versatile, multifunctional platform. Overall, this design strategy paves the way for bioinspired advanced materials that merge mechanical robustness with customizable functionalities derived from inorganic components, promising applications in flexible electronics and functional structural materials.

Abstract Image

具有双网络拓扑结构的有机-无机纳米复合有机凝胶,增强了机械和介电性能
传统的人工纳米复合材料往往依赖于简单的共混,这可能导致有机相和无机相之间的团聚和界面不相容性。相比之下,像骨骼和牙齿这样的天然矿化组织通过纳米尺度的有机-无机互穿网络表现出出色的机械性能。受这些自然集成结构的启发,我们报道了一种双网络(DN)有机-无机有机凝胶复合材料,该复合材料由自组装的多金属氧酸亚纳米线(SNWs)与聚丙烯酸叔丁酯(PtBA)基质拓扑交织而成。SNWs具有亚纳米级的直径和类似聚合物链的灵活性,使其能够形成与有机相无缝集成的无机网络。这种连续互穿的DN结构增强了关键的机械性能,包括抗拉强度、刚度和韧性,同时调节介电常数和电击穿强度等介电性能,从而形成了一个多功能的平台。总体而言,这种设计策略为生物启发的先进材料铺平了道路,这些材料将机械坚固性与源自无机组件的可定制功能相结合,在柔性电子和功能结构材料中有很好的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信