DeepTFtyper: an interpretable morphology-aware graph neural network for translating histopathology images into molecular subtypes in small cell lung cancer.
Xin Li, Fan Yang, Yibo Zhang, Zijian Yang, Ruanqi Chen, Meng Zhou, Lin Yang
{"title":"DeepTFtyper: an interpretable morphology-aware graph neural network for translating histopathology images into molecular subtypes in small cell lung cancer.","authors":"Xin Li, Fan Yang, Yibo Zhang, Zijian Yang, Ruanqi Chen, Meng Zhou, Lin Yang","doi":"10.1093/bib/bbaf284","DOIUrl":null,"url":null,"abstract":"<p><p>Small cell lung cancer (SCLC) is a highly aggressive high-grade neuroendocrine carcinoma with a poor prognosis. Molecular subtyping of transcription factors (SCLC-A, -N, -P, and -Y) shows great potential for guiding treatment decisions. However, its clinical application are limited by insufficient samples and the complexity of molecular testing. In this study, we developed DeepTFtyper, a graph neural network-based deep learning model for automatically classifying SCLC molecular subtypes from hematoxylin and eosin-stained whole-slide images. DeepTFtyper was trained and tested on the Cancer Hospital, Chinese Academy of Medical Science cohort (n = 389) with 4-fold cross-validation, and achieved high performance with an area under the receiver operating characteristic curve above 0.70 for all four molecular subtypes identified by immunohistochemistry (IHC). Furthermore, the digital H-scores predicted by DeepTFtyper showed a significant correlation with IHC-based H-scores. Patch-level visualization and morphological analysis revealed that DeepTFtyper identifies interpretable and generalizable features corresponding to areas of relevant transcription factor expression as revealed by IHC staining and correlates well with morphological features. This study represents the first deep learning framework for predicting SCLC molecular subtypes from hematoxylin and eosin-stained histology slides, providing a scalable, accurate, and clinically relevant tool to improve patient management and guide personalized treatment decisions.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204680/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf284","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Small cell lung cancer (SCLC) is a highly aggressive high-grade neuroendocrine carcinoma with a poor prognosis. Molecular subtyping of transcription factors (SCLC-A, -N, -P, and -Y) shows great potential for guiding treatment decisions. However, its clinical application are limited by insufficient samples and the complexity of molecular testing. In this study, we developed DeepTFtyper, a graph neural network-based deep learning model for automatically classifying SCLC molecular subtypes from hematoxylin and eosin-stained whole-slide images. DeepTFtyper was trained and tested on the Cancer Hospital, Chinese Academy of Medical Science cohort (n = 389) with 4-fold cross-validation, and achieved high performance with an area under the receiver operating characteristic curve above 0.70 for all four molecular subtypes identified by immunohistochemistry (IHC). Furthermore, the digital H-scores predicted by DeepTFtyper showed a significant correlation with IHC-based H-scores. Patch-level visualization and morphological analysis revealed that DeepTFtyper identifies interpretable and generalizable features corresponding to areas of relevant transcription factor expression as revealed by IHC staining and correlates well with morphological features. This study represents the first deep learning framework for predicting SCLC molecular subtypes from hematoxylin and eosin-stained histology slides, providing a scalable, accurate, and clinically relevant tool to improve patient management and guide personalized treatment decisions.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.