Explicit Constructions of Capacity-Achieving T-PIR Schemes Over Small Fields via Generalized Minor Matrices

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jingke Xu;Weijun Fang
{"title":"Explicit Constructions of Capacity-Achieving T-PIR Schemes Over Small Fields via Generalized Minor Matrices","authors":"Jingke Xu;Weijun Fang","doi":"10.1109/TIT.2025.3565288","DOIUrl":null,"url":null,"abstract":"Suppose a distributed storage system containing <italic>M</i> files is replicated across <italic>N</i> servers, and a user wants to privately retrieve one file by accessing the servers such that the identity of the retrieved file is kept secret from any subset of up to <italic>T</i> servers, where each file can be viewed as a vector over the <italic>q</i>-ary finite field <inline-formula> <tex-math>$\\mathbb {F}_{q}$ </tex-math></inline-formula>. A scheme designed for this purpose is called a <italic>T</i>-private information retrieval (<italic>T</i>-PIR) scheme. We consider the problem of explicitly constructing capacity-achieving <italic>T</i>-PIR schemes over small finite fields. In this paper, we first provide a general framework for constructing explicit capacity-achieving <italic>T</i>-PIR schemes for all parameters, which only relies on an MDS array matrix with a special information set. To construct such an MDS array matrix, we propose a new family of matrices over finite fields, called the generalized minor matrices of the Moore matrix, and establish a series of key identities. By combining favourable properties of generalized minor matrices with our framework, we construct an explicit capacity-achieving <italic>T</i>-PIR scheme with optimal sub-packetization over the field <inline-formula> <tex-math>$\\mathbb {F}_{q}$ </tex-math></inline-formula>, as small as possible, for three classes of parameters <inline-formula> <tex-math>$N,T,M\\geq 3$ </tex-math></inline-formula>. Specifically, the first class of construction works for all <inline-formula> <tex-math>$N=d(2t-1), T=dt$ </tex-math></inline-formula>, and the field size <italic>q</i> is the least prime power satisfying <inline-formula> <tex-math>$q^{t-1}\\geq N$ </tex-math></inline-formula>. Moreover, this construction generalizes the scheme proposed by Xu and Wang in 2022, which only considers the case of <inline-formula> <tex-math>$N=d(2t-1), T=dt$ </tex-math></inline-formula> with <inline-formula> <tex-math>$2^{t-1}\\geq N$ </tex-math></inline-formula>. For all <inline-formula> <tex-math>$N=d(2t+1), T=dt$ </tex-math></inline-formula>, our second <italic>T</i>-PIR scheme is the first explicit construction, and the field size <italic>q</i> is the least prime power satisfying <inline-formula> <tex-math>$q^{t} \\geq N$ </tex-math></inline-formula>, which is the smallest field size among all known explicit capacity-achieving <italic>T</i>-PIR schemes. Particularly, when <inline-formula> <tex-math>$2^{t}\\geq N$ </tex-math></inline-formula>, the field size of such constructions can be reduced to 2. In the case of <inline-formula> <tex-math>$N=4s$ </tex-math></inline-formula> and <inline-formula> <tex-math>$T=2s+1$ </tex-math></inline-formula>, our scheme is the first one to reduce the field size to <inline-formula> <tex-math>$q=2$ </tex-math></inline-formula>. Compared with all known explicitly capacity-achieving <italic>T</i>-PIR schemes, the required field of our schemes has the smallest size.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 7","pages":"5109-5129"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10980207/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Suppose a distributed storage system containing M files is replicated across N servers, and a user wants to privately retrieve one file by accessing the servers such that the identity of the retrieved file is kept secret from any subset of up to T servers, where each file can be viewed as a vector over the q-ary finite field $\mathbb {F}_{q}$ . A scheme designed for this purpose is called a T-private information retrieval (T-PIR) scheme. We consider the problem of explicitly constructing capacity-achieving T-PIR schemes over small finite fields. In this paper, we first provide a general framework for constructing explicit capacity-achieving T-PIR schemes for all parameters, which only relies on an MDS array matrix with a special information set. To construct such an MDS array matrix, we propose a new family of matrices over finite fields, called the generalized minor matrices of the Moore matrix, and establish a series of key identities. By combining favourable properties of generalized minor matrices with our framework, we construct an explicit capacity-achieving T-PIR scheme with optimal sub-packetization over the field $\mathbb {F}_{q}$ , as small as possible, for three classes of parameters $N,T,M\geq 3$ . Specifically, the first class of construction works for all $N=d(2t-1), T=dt$ , and the field size q is the least prime power satisfying $q^{t-1}\geq N$ . Moreover, this construction generalizes the scheme proposed by Xu and Wang in 2022, which only considers the case of $N=d(2t-1), T=dt$ with $2^{t-1}\geq N$ . For all $N=d(2t+1), T=dt$ , our second T-PIR scheme is the first explicit construction, and the field size q is the least prime power satisfying $q^{t} \geq N$ , which is the smallest field size among all known explicit capacity-achieving T-PIR schemes. Particularly, when $2^{t}\geq N$ , the field size of such constructions can be reduced to 2. In the case of $N=4s$ and $T=2s+1$ , our scheme is the first one to reduce the field size to $q=2$ . Compared with all known explicitly capacity-achieving T-PIR schemes, the required field of our schemes has the smallest size.
基于广义小矩阵的小域上容量实现T-PIR格式的显式构造
假设一个包含M个文件的分布式存储系统被复制到N个服务器上,并且用户希望通过访问服务器来私下检索一个文件,这样就可以对最多T个服务器的任何子集保密检索文件的身份,其中每个文件可以被视为q-ary有限域$\mathbb {F}_{q}$上的向量。为此目的设计的方案称为t -私有信息检索(T-PIR)方案。我们考虑了在小有限域上显式构造能力实现T-PIR格式的问题。在本文中,我们首先提供了一个构造所有参数的显式容量实现T-PIR方案的一般框架,该框架仅依赖于具有特殊信息集的MDS阵列矩阵。为了构造这样一个MDS阵列矩阵,我们提出了有限域上的一类新的矩阵,称为摩尔矩阵的广义小矩阵,并建立了一系列关键恒等式。通过将广义小矩阵的有利性质与我们的框架相结合,我们构建了一个显式的容量实现T-PIR方案,该方案具有尽可能小的域$\mathbb {F}_{q}$上的最优子分组,适用于三类参数$N,T,M\geq 3$。具体而言,第一类建筑工程为所有$N=d(2t-1), T=dt$,且场大小q为满足$q^{t-1}\geq N$的最小素幂。此外,本构建将Xu和Wang在2022年提出的方案进行了推广,该方案只考虑$N=d(2t-1), T=dt$与$2^{t-1}\geq N$的情况。对于所有的$N=d(2t+1), T=dt$,我们的第二个T-PIR方案是第一个显式结构,并且场大小q是满足$q^{t} \geq N$的最小素幂,这是所有已知显式容量实现T-PIR方案中最小的场大小。特别是,当$2^{t}\geq N$时,这种结构的字段大小可以减少到2。对于$N=4s$和$T=2s+1$,我们的方案是第一个将字段大小减小到$q=2$的方案。与所有已知的显式实现能力的T-PIR方案相比,我们的方案所需域的大小最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信