Introducing high-valence element into P2-type layered cathode material for high-rate sodium-ion batteries

IF 8.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Fanjun Kong , Jing Zhang , Yuting Tang , Chencheng Sun , Chunfu Lin , Tao Zhang , Wangsheng Chu , Li Song , Liang Zhang , Shi Tao
{"title":"Introducing high-valence element into P2-type layered cathode material for high-rate sodium-ion batteries","authors":"Fanjun Kong ,&nbsp;Jing Zhang ,&nbsp;Yuting Tang ,&nbsp;Chencheng Sun ,&nbsp;Chunfu Lin ,&nbsp;Tao Zhang ,&nbsp;Wangsheng Chu ,&nbsp;Li Song ,&nbsp;Liang Zhang ,&nbsp;Shi Tao","doi":"10.1016/j.cclet.2025.110993","DOIUrl":null,"url":null,"abstract":"<div><div>P2-type layered transition-metal oxides with high energy density and rich variety have attracted extensive attention for sodium-ion batteries (SIBs) in grid-scale energy storage application, but they usually suffer from sluggish kinetics and large volume change upon cycling. Herein, we designed a high-performance P2-type Na<sub>0.67</sub>Ni<sub>0.31</sub>Mn<sub>0.67</sub>Mo<sub>0.02</sub>O<sub>2</sub> (NNMMO) cathode with regulated electronic environment and Na<sup>+</sup> zigzag ordering modulation <em>via</em> high-valence Mo<sup>6+</sup> stabilization engineering. The achieved NNMMO cathode exhibits a high-rate capability with a reversible capacity of 77.2 mAh/g at 10 C and a long cycle life with a capacity retention of 75 % at 2 C after 1000 cycles. In addition, <em>in situ</em> X-ray diffraction and <em>ex-situ</em> X-ray absorption fine structure spectroscopy characterizations verify that the presence of Mo<sup>6+</sup> also stabilizes the desodiated structure through a pinning effect, achieving an extremely low volume change of 1.04 % upon Na<sup>+</sup> extraction. The quantified diffusional analysis and theoretical calculations demonstrate that the Mo<sup>6+</sup>-doping improves the Na<sup>+</sup> diffusion kinetics, optimizes the energy band structure and enhances the TM-O bond strength. Additionally, the as-fabricated pouch cells by paring NNMMO cathode and hard carbon anode show impressive cycling stability with an energy density of 296.7 Wh/kg. This study broadens the perspective for high-valence metal ion doping to obtain superior cathode materials and pave the way for developing high-energy-density SIBs.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"36 8","pages":"Article 110993"},"PeriodicalIF":8.9000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Chemical Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001841725001743","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

P2-type layered transition-metal oxides with high energy density and rich variety have attracted extensive attention for sodium-ion batteries (SIBs) in grid-scale energy storage application, but they usually suffer from sluggish kinetics and large volume change upon cycling. Herein, we designed a high-performance P2-type Na0.67Ni0.31Mn0.67Mo0.02O2 (NNMMO) cathode with regulated electronic environment and Na+ zigzag ordering modulation via high-valence Mo6+ stabilization engineering. The achieved NNMMO cathode exhibits a high-rate capability with a reversible capacity of 77.2 mAh/g at 10 C and a long cycle life with a capacity retention of 75 % at 2 C after 1000 cycles. In addition, in situ X-ray diffraction and ex-situ X-ray absorption fine structure spectroscopy characterizations verify that the presence of Mo6+ also stabilizes the desodiated structure through a pinning effect, achieving an extremely low volume change of 1.04 % upon Na+ extraction. The quantified diffusional analysis and theoretical calculations demonstrate that the Mo6+-doping improves the Na+ diffusion kinetics, optimizes the energy band structure and enhances the TM-O bond strength. Additionally, the as-fabricated pouch cells by paring NNMMO cathode and hard carbon anode show impressive cycling stability with an energy density of 296.7 Wh/kg. This study broadens the perspective for high-valence metal ion doping to obtain superior cathode materials and pave the way for developing high-energy-density SIBs.

Abstract Image

高倍率钠离子电池p2型层状正极材料中引入高价元
具有高能量密度、种类丰富的p2型层状过渡金属氧化物在钠离子电池(sib)电网储能应用中受到广泛关注,但其在循环过程中存在动力学缓慢、体积变化大的问题。在此,我们设计了一种高性能的p2型Na0.67Ni0.31Mn0.67Mo0.02O2 (NNMMO)阴极,该阴极具有可调节的电子环境和Na+之字形有序调制的高价Mo6+稳定化工程。所制备的NNMMO阴极在10℃下具有77.2 mAh/g的高倍率容量,在1000次循环后,在2℃下的容量保持率为75% %。此外,原位x射线衍射和非原位x射线吸收精细结构光谱表征验证了Mo6+的存在也通过钉钉效应稳定了脱核结构,在Na+萃取时实现了1.04 %的极低体积变化。定量扩散分析和理论计算表明,Mo6+的掺杂改善了Na+的扩散动力学,优化了能带结构,提高了TM-O键的强度。此外,通过NNMMO阴极和硬碳阳极的对偶制备的袋状电池具有良好的循环稳定性,能量密度为296.7 Wh/kg。本研究拓宽了高价金属离子掺杂获得优质正极材料的前景,为开发高能量密度sib铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Chemical Letters
Chinese Chemical Letters 化学-化学综合
CiteScore
14.10
自引率
15.40%
发文量
8969
审稿时长
1.6 months
期刊介绍: Chinese Chemical Letters (CCL) (ISSN 1001-8417) was founded in July 1990. The journal publishes preliminary accounts in the whole field of chemistry, including inorganic chemistry, organic chemistry, analytical chemistry, physical chemistry, polymer chemistry, applied chemistry, etc.Chinese Chemical Letters does not accept articles previously published or scheduled to be published. To verify originality, your article may be checked by the originality detection service CrossCheck.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信