On-Demand Control of Lanthanide Optical Dynamics via Pumping-Flux Modulation.

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nano Letters Pub Date : 2025-06-18 Epub Date: 2025-06-06 DOI:10.1021/acs.nanolett.5c02172
Dan Guo, Xuewen Pang, Chang Liu, Yixuan Li, Jiaye Chen, Tianrui Zhai, Liangliang Liang, Xiaogang Liu
{"title":"On-Demand Control of Lanthanide Optical Dynamics via Pumping-Flux Modulation.","authors":"Dan Guo, Xuewen Pang, Chang Liu, Yixuan Li, Jiaye Chen, Tianrui Zhai, Liangliang Liang, Xiaogang Liu","doi":"10.1021/acs.nanolett.5c02172","DOIUrl":null,"url":null,"abstract":"<p><p>Precise control of lanthanide luminescence decay is essential for the development of emerging nanophotonic applications. However, existing strategies rely on static material modifications. Here, we introduce a pumping-flux modulation strategy that enables reversible, on-demand tuning of luminescence lifetimes via direct control of the cross-relaxation processes. Using highly Er<sup>3+</sup>-doped nanocrystals, we demonstrate that adjusting excitation pulse duration and intensity enables over 10-fold tuning in green (from 47.3 to 537.1 μs) and near-infrared (1506.4 to 145.5 μs) emissions. Mechanistic studies reveal that excitation profile modulation alters the populations of ground and intermediate energy states, which, in turn, influences cross-relaxation pathways and emission kinetics. We further demonstrate dynamically programmable lifetime mapping for optical encryption, eliminating the need for complex materials engineering. This work introduces a fundamentally new route for controlling lanthanide emission in real time with broad implications for adaptive displays, reconfigurable photonics, and time-domain optical security.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":" ","pages":"9787-9793"},"PeriodicalIF":9.6000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c02172","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Precise control of lanthanide luminescence decay is essential for the development of emerging nanophotonic applications. However, existing strategies rely on static material modifications. Here, we introduce a pumping-flux modulation strategy that enables reversible, on-demand tuning of luminescence lifetimes via direct control of the cross-relaxation processes. Using highly Er3+-doped nanocrystals, we demonstrate that adjusting excitation pulse duration and intensity enables over 10-fold tuning in green (from 47.3 to 537.1 μs) and near-infrared (1506.4 to 145.5 μs) emissions. Mechanistic studies reveal that excitation profile modulation alters the populations of ground and intermediate energy states, which, in turn, influences cross-relaxation pathways and emission kinetics. We further demonstrate dynamically programmable lifetime mapping for optical encryption, eliminating the need for complex materials engineering. This work introduces a fundamentally new route for controlling lanthanide emission in real time with broad implications for adaptive displays, reconfigurable photonics, and time-domain optical security.

Abstract Image

基于泵浦-磁通调制的镧系元素光动力学按需控制。
镧系发光衰减的精确控制对于纳米光子应用的发展至关重要。然而,现有的策略依赖于静态的材料修改。在这里,我们引入了一种泵浦-磁通调制策略,通过直接控制交叉弛豫过程,实现了可逆的、按需的发光寿命调整。使用高Er3+掺杂的纳米晶体,我们证明了调节激发脉冲的持续时间和强度可以在绿色(从47.3到537.1 μs)和近红外(1506.4到145.5 μs)发射中实现超过10倍的调谐。机理研究表明,激发剖面调制改变了基态和中能态的居群,进而影响了交叉弛豫路径和发射动力学。我们进一步展示了用于光学加密的动态可编程寿命映射,消除了对复杂材料工程的需要。这项工作为实时控制镧系元素发射引入了一种全新的途径,对自适应显示、可重构光子学和时域光学安全具有广泛的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信