SANIYA GRATIOUS, Bo Li, Dipanjana Mondal, Dayona Aleyamma Varghese, Alok Kumar, Jibin Thomas, De-En Jiang, Vinayak B. Kamble, Sukhendu Mandal
{"title":"Identifying the Superatomic AuCu56 Nanocluster through a Ligand-exchange Coupled Metal-exchange Induced Transformation","authors":"SANIYA GRATIOUS, Bo Li, Dipanjana Mondal, Dayona Aleyamma Varghese, Alok Kumar, Jibin Thomas, De-En Jiang, Vinayak B. Kamble, Sukhendu Mandal","doi":"10.1039/d5sc02515j","DOIUrl":null,"url":null,"abstract":"Quantum-sized metal nanoclusters can be viewed as superatoms that mimic the electron-shell closing behaviours of atoms, where these electronic shell configurations often govern their properties. Various superatomic nanoclusters with diverse structures and valence states have been identified over the past few years, but the 1S valence state of atomically precise Au nanoclusters have rarely been seen. Herein, we have achieved the synthesis of a 1S1 superatomic [AuCu56S12(SAdm)20(O3SAdm)12] nanocluster from the eight-electron [Au23(S-c-C6H11)16]- nanocluster via a ligand-exchange coupled metal-exchange induced transformation. Detailed studies through mass spectrometry provided insights into the nanocluster formation, and theoretical studies revealed the superatomic nature of the nanocluster. Moreover, the as-synthesized nanocluster exhibited a broad optical absorption, leading to good photocurrent response under UV illumination. This work introduces a novel doping strategy that enables us to realize a rare superatomic valence state in an alloy cluster and to explore its unique light-induced properties.","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"2 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5sc02515j","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum-sized metal nanoclusters can be viewed as superatoms that mimic the electron-shell closing behaviours of atoms, where these electronic shell configurations often govern their properties. Various superatomic nanoclusters with diverse structures and valence states have been identified over the past few years, but the 1S valence state of atomically precise Au nanoclusters have rarely been seen. Herein, we have achieved the synthesis of a 1S1 superatomic [AuCu56S12(SAdm)20(O3SAdm)12] nanocluster from the eight-electron [Au23(S-c-C6H11)16]- nanocluster via a ligand-exchange coupled metal-exchange induced transformation. Detailed studies through mass spectrometry provided insights into the nanocluster formation, and theoretical studies revealed the superatomic nature of the nanocluster. Moreover, the as-synthesized nanocluster exhibited a broad optical absorption, leading to good photocurrent response under UV illumination. This work introduces a novel doping strategy that enables us to realize a rare superatomic valence state in an alloy cluster and to explore its unique light-induced properties.
期刊介绍:
Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.