Siming Li , Enyang Sun , Pengfei Wei , Wei Zhao , Suizhu Pei , Ying Chen , Jie Yang , Huili Chen , Xi Yin , Min Wang , Yawei Li
{"title":"Impregnation of ionic liquid into porous Fe-N-C electrocatalyst to improve electrode kinetics and mass transport for polymer electrolyte fuel cells","authors":"Siming Li , Enyang Sun , Pengfei Wei , Wei Zhao , Suizhu Pei , Ying Chen , Jie Yang , Huili Chen , Xi Yin , Min Wang , Yawei Li","doi":"10.1016/S1872-2067(25)64654-7","DOIUrl":null,"url":null,"abstract":"<div><div>Developing efficient and stable non-precious metal catalysts is essential for replacing platinum-based catalysts in polymer electrolyte membrane fuel cells (PEMFCs). The transition metal and nitrogen co-doped carbon electrocatalyst (M-N-C) is considered an effective alternative to precious metal catalysts. However, its relatively poor performance in acidic environments has always been a problem plaguing its practical application in PEMFCs. This study presents a sequential deposition methodology for constructing a composite catalytic system of Fe-N-C and ionic liquid (IL), which exhibits improved performance at both half-cell and membrane electrode assembly scales. The presence of IL significantly inhibits H<sub>2</sub>O<sub>2</sub> production, preferentially promoting the 4e<sup>–</sup> O<sub>2</sub> reduction reaction, resulting in improved electrocatalytic activity and stability. Additionally, the enhanced PEMFC performance of IL containing electrodes is a direct result of the improved ionic and reactant accessibility of the pore confined Fe-N-C catalysts where the IL minimizes local resistive transport losses. This study establishes a strategic foundation for the practical utilization of non-precious metal catalysts in PEMFCs and other energy converting technologies.</div></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"72 ","pages":"Pages 277-288"},"PeriodicalIF":15.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206725646547","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Developing efficient and stable non-precious metal catalysts is essential for replacing platinum-based catalysts in polymer electrolyte membrane fuel cells (PEMFCs). The transition metal and nitrogen co-doped carbon electrocatalyst (M-N-C) is considered an effective alternative to precious metal catalysts. However, its relatively poor performance in acidic environments has always been a problem plaguing its practical application in PEMFCs. This study presents a sequential deposition methodology for constructing a composite catalytic system of Fe-N-C and ionic liquid (IL), which exhibits improved performance at both half-cell and membrane electrode assembly scales. The presence of IL significantly inhibits H2O2 production, preferentially promoting the 4e– O2 reduction reaction, resulting in improved electrocatalytic activity and stability. Additionally, the enhanced PEMFC performance of IL containing electrodes is a direct result of the improved ionic and reactant accessibility of the pore confined Fe-N-C catalysts where the IL minimizes local resistive transport losses. This study establishes a strategic foundation for the practical utilization of non-precious metal catalysts in PEMFCs and other energy converting technologies.
期刊介绍:
The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.