High-Granularity Machine Learning Prediction of Acute Brain Injury in Patients Receiving Venoarterial Extracorporeal Membrane Oxygenation.

IF 3.1 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Mingfeng Cao, Shi Nan Feng, Yaman B Ahmed, Winnie Liu, Patricia Brown, Andrew Kalra, Benjamin Shou, Anastasios Bezerianos, Nitish Thakor, Glenn Whitman, Sung-Min Cho
{"title":"High-Granularity Machine Learning Prediction of Acute Brain Injury in Patients Receiving Venoarterial Extracorporeal Membrane Oxygenation.","authors":"Mingfeng Cao, Shi Nan Feng, Yaman B Ahmed, Winnie Liu, Patricia Brown, Andrew Kalra, Benjamin Shou, Anastasios Bezerianos, Nitish Thakor, Glenn Whitman, Sung-Min Cho","doi":"10.1097/MAT.0000000000002449","DOIUrl":null,"url":null,"abstract":"<p><p>Acute brain injury (ABI) is prevalent among patients undergoing venoarterial extracorporeal membrane oxygenation (VA-ECMO) and significantly impact recovery. Early prediction of ABI could enable timely interventions to prevent adverse outcomes, but existing predictive methods remain suboptimal. This study aimed to enhance ABI prediction using machine learning (ML) models and high-temporal-resolution granular data. We retrospectively analyzed 355 VA-ECMO patients treated at Johns Hopkins Hospital (JHH) from 2016 to 2024, collecting over 3 million data points from the JHH Research Electronic Data Capture (REDCap) database, with an average of 80,000 data points per patient. Acute brain injury was defined as ischemic stroke, intracranial hemorrhage, hypoxic-ischemic brain injury, or seizure. Four ML models were used: Random Forest, Categorical Boosting, Adaptive Boosting, and Extreme Gradient Boosting. Among 355 patients (median age 59 years, 56.9% male), 13.5% developed ABI. The models achieved an optimal area under the receiver operating characteristic curve (AUROC) of 0.79, accuracy of 87%, sensitivity of 53%, specificity of 99%, and precision-recall (PR)-AUC of 0.47. Key predictors included high minimum values of systolic blood pressure and variability in on-ECMO pulse pressure. High-resolution granular data enhanced ML performance for ABI prediction. Future efforts should focus on integrating continuous data platforms to enable real-time monitoring and personalized care, optimizing patient outcomes.</p>","PeriodicalId":8844,"journal":{"name":"ASAIO Journal","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASAIO Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1097/MAT.0000000000002449","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Acute brain injury (ABI) is prevalent among patients undergoing venoarterial extracorporeal membrane oxygenation (VA-ECMO) and significantly impact recovery. Early prediction of ABI could enable timely interventions to prevent adverse outcomes, but existing predictive methods remain suboptimal. This study aimed to enhance ABI prediction using machine learning (ML) models and high-temporal-resolution granular data. We retrospectively analyzed 355 VA-ECMO patients treated at Johns Hopkins Hospital (JHH) from 2016 to 2024, collecting over 3 million data points from the JHH Research Electronic Data Capture (REDCap) database, with an average of 80,000 data points per patient. Acute brain injury was defined as ischemic stroke, intracranial hemorrhage, hypoxic-ischemic brain injury, or seizure. Four ML models were used: Random Forest, Categorical Boosting, Adaptive Boosting, and Extreme Gradient Boosting. Among 355 patients (median age 59 years, 56.9% male), 13.5% developed ABI. The models achieved an optimal area under the receiver operating characteristic curve (AUROC) of 0.79, accuracy of 87%, sensitivity of 53%, specificity of 99%, and precision-recall (PR)-AUC of 0.47. Key predictors included high minimum values of systolic blood pressure and variability in on-ECMO pulse pressure. High-resolution granular data enhanced ML performance for ABI prediction. Future efforts should focus on integrating continuous data platforms to enable real-time monitoring and personalized care, optimizing patient outcomes.

静脉体外膜氧合患者急性脑损伤的高粒度机器学习预测。
急性脑损伤(ABI)在静脉动脉体外膜氧合(VA-ECMO)患者中普遍存在,并显著影响康复。早期预测ABI可以及时干预预防不良后果,但现有的预测方法仍然不够理想。本研究旨在利用机器学习(ML)模型和高时间分辨率粒度数据增强ABI预测。我们回顾性分析了2016年至2024年在约翰霍普金斯医院(JHH)接受治疗的355例VA-ECMO患者,从JHH研究电子数据采集(REDCap)数据库收集了300多万个数据点,平均每位患者8万个数据点。急性脑损伤定义为缺血性脑卒中、颅内出血、缺氧缺血性脑损伤或癫痫发作。使用了四种机器学习模型:随机森林、分类增强、自适应增强和极端梯度增强。355例患者(中位年龄59岁,56.9%为男性)中,13.5%发生ABI。模型的最佳受试者工作特征曲线下面积(AUROC)为0.79,准确度为87%,灵敏度为53%,特异度为99%,精确召回率(PR)-AUC为0.47。关键预测因素包括高收缩压最小值和ecmo时脉压的变异性。高分辨率粒度数据增强了ABI预测的ML性能。未来的努力应集中在集成连续数据平台上,以实现实时监测和个性化护理,优化患者结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ASAIO Journal
ASAIO Journal 医学-工程:生物医学
CiteScore
6.60
自引率
7.10%
发文量
651
审稿时长
4-8 weeks
期刊介绍: ASAIO Journal is in the forefront of artificial organ research and development. On the cutting edge of innovative technology, it features peer-reviewed articles of the highest quality that describe research, development, the most recent advances in the design of artificial organ devices and findings from initial testing. Bimonthly, the ASAIO Journal features state-of-the-art investigations, laboratory and clinical trials, and discussions and opinions from experts around the world. The official publication of the American Society for Artificial Internal Organs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信