Integration of protein stability and AlphaMissense scores improves bioinformatic impact prediction for p53 missense and in-frame amino acid deletion variants.

IF 8.1 1区 生物学 Q1 GENETICS & HEREDITY
American journal of human genetics Pub Date : 2025-05-01 Epub Date: 2025-04-14 DOI:10.1016/j.ajhg.2025.01.012
Nitsan Rotenberg, Cristina Fortuno, Matthew J Varga, Adam C Chamberlin, Lobna Ramadane-Morchadi, Bing-Jian Feng, Miguel de la Hoya, Marcy E Richardson, Amanda B Spurdle
{"title":"Integration of protein stability and AlphaMissense scores improves bioinformatic impact prediction for p53 missense and in-frame amino acid deletion variants.","authors":"Nitsan Rotenberg, Cristina Fortuno, Matthew J Varga, Adam C Chamberlin, Lobna Ramadane-Morchadi, Bing-Jian Feng, Miguel de la Hoya, Marcy E Richardson, Amanda B Spurdle","doi":"10.1016/j.ajhg.2025.01.012","DOIUrl":null,"url":null,"abstract":"<p><p>The clinical classification of germline missense variants and single-amino-acid deletions is challenging. The BayesDel and Align-GVGD bioinformatic prediction tools currently used for ClinGen TP53 variant curation expert panel (VCEP) classification do not directly capture changes in protein folding stability, measured using computed destabilization energies (ΔΔG scores). The AlphaMissense tool recently developed by Google DeepMind to predict pathogenicity for all human proteome missense variants is trained in part using AlphaFold2 architecture. Our study investigated whether protein folding stability and/or AlphaMissense scores could improve impact prediction for p53 missense and single-amino-acid deletion variants. ΔΔG scores were calculated for missense variants using FoldX and for single-amino-acid deletions using an AlphaFold2/RosettaRelax protocol. Residue surface exposure was categorized using relative solvent accessibility (RSA) measures. The predictive values of ΔΔG scores, AlphaMissense, BayesDel, and Align-GVGD were examined using Boruta and binary logistic regression based on functionally defined reference sets. The likelihood ratio (LR) toward pathogenicity was estimated and used to refine optimal categories for predicting variant pathogenicity for different RSA values. We showed that current VCEP predictive approaches for missense variants were improved by integrating ΔΔG scores ≥2.5 kcal/mol for partially buried and buried residues, but better performance was achieved using AlphaMissense with ΔΔG and RSA. For deletion variants, ΔΔG scores ≥4.8 Rosetta energy unit (REU) in buried residues outperformed currently used predictive approaches. Future TP53 VCEP specifications for p53 missense impact prediction may consider AlphaMissense, ΔΔG score, and RSA combined for substitution variants and ΔΔG score alone for deletion variants.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":"112 5","pages":"1003-1014"},"PeriodicalIF":8.1000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12120181/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ajhg.2025.01.012","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

The clinical classification of germline missense variants and single-amino-acid deletions is challenging. The BayesDel and Align-GVGD bioinformatic prediction tools currently used for ClinGen TP53 variant curation expert panel (VCEP) classification do not directly capture changes in protein folding stability, measured using computed destabilization energies (ΔΔG scores). The AlphaMissense tool recently developed by Google DeepMind to predict pathogenicity for all human proteome missense variants is trained in part using AlphaFold2 architecture. Our study investigated whether protein folding stability and/or AlphaMissense scores could improve impact prediction for p53 missense and single-amino-acid deletion variants. ΔΔG scores were calculated for missense variants using FoldX and for single-amino-acid deletions using an AlphaFold2/RosettaRelax protocol. Residue surface exposure was categorized using relative solvent accessibility (RSA) measures. The predictive values of ΔΔG scores, AlphaMissense, BayesDel, and Align-GVGD were examined using Boruta and binary logistic regression based on functionally defined reference sets. The likelihood ratio (LR) toward pathogenicity was estimated and used to refine optimal categories for predicting variant pathogenicity for different RSA values. We showed that current VCEP predictive approaches for missense variants were improved by integrating ΔΔG scores ≥2.5 kcal/mol for partially buried and buried residues, but better performance was achieved using AlphaMissense with ΔΔG and RSA. For deletion variants, ΔΔG scores ≥4.8 Rosetta energy unit (REU) in buried residues outperformed currently used predictive approaches. Future TP53 VCEP specifications for p53 missense impact prediction may consider AlphaMissense, ΔΔG score, and RSA combined for substitution variants and ΔΔG score alone for deletion variants.

蛋白质稳定性和AlphaMissense评分的整合提高了p53错义和框架内氨基酸缺失变异的生物信息学影响预测。
临床分类的种系错义变异和单氨基酸缺失是具有挑战性的。目前用于ClinGen TP53变异管理专家小组(VCEP)分类的BayesDel和aligngvgd生物信息学预测工具不能直接捕获蛋白质折叠稳定性的变化,使用计算的不稳定能(ΔΔG分数)来测量。b谷歌DeepMind最近开发的AlphaMissense工具,用于预测所有人类蛋白质组错义变异的致病性,部分使用AlphaFold2架构进行训练。我们的研究调查了蛋白质折叠稳定性和/或AlphaMissense评分是否可以改善对p53错义和单氨基酸缺失变异的影响预测。使用FoldX计算错义变异的ΔΔG分数,使用AlphaFold2/RosettaRelax协议计算单氨基酸缺失的ΔΔG分数。采用相对溶剂可及性(RSA)方法对残留物表面暴露进行分类。使用Boruta和基于功能定义参考集的二元逻辑回归来检验ΔΔG评分、AlphaMissense、BayesDel和Align-GVGD的预测值。对致病性的似然比(LR)进行了估计,并用于改进预测不同RSA值变异致病性的最佳类别。我们发现,目前对错义变异的VCEP预测方法通过整合ΔΔG分数≥2.5 kcal/mol对部分掩埋和掩埋残基的积分得到了改进,但使用AlphaMissense与ΔΔG和RSA结合获得了更好的性能。对于缺失变体,掩埋残留物ΔΔG得分≥4.8 Rosetta能量单位(REU)优于目前使用的预测方法。未来用于p53错义影响预测的TP53 VCEP规范可能会考虑替换变异体的AlphaMissense、ΔΔG评分和RSA组合,而缺失变异体的ΔΔG评分单独。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.70
自引率
4.10%
发文量
185
审稿时长
1 months
期刊介绍: The American Journal of Human Genetics (AJHG) is a monthly journal published by Cell Press, chosen by The American Society of Human Genetics (ASHG) as its premier publication starting from January 2008. AJHG represents Cell Press's first society-owned journal, and both ASHG and Cell Press anticipate significant synergies between AJHG content and that of other Cell Press titles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信