Srishti Sinha, Laura S Hackl, Samantha L Huey, Elisabetta Lambertini, Stella Nordhagen, Anna M Bennett, Nidhi Shrestha, Nathaniel L Cole, Julia L Finkelstein, Saurabh Mehta
{"title":"Overview of foodborne hazards associated with inflammation and metabolic health.","authors":"Srishti Sinha, Laura S Hackl, Samantha L Huey, Elisabetta Lambertini, Stella Nordhagen, Anna M Bennett, Nidhi Shrestha, Nathaniel L Cole, Julia L Finkelstein, Saurabh Mehta","doi":"10.1186/s44263-025-00150-0","DOIUrl":null,"url":null,"abstract":"<p><p>Access to safe and nutritious food is key to ensuring health and well-being and is critical to meeting the United Nations' Sustainable Development Goals. However, a synthesis of the associations between foodborne illness and malnutrition, such as metabolic health, remains a gap in the literature base. In this review, we summarized existing evidence on the impacts of biological and chemical hazards on nutrition-related health outcomes, specifically overweight and obesity, inflammation, metabolic disease, thyroid function, cancer development, and adverse birth outcomes, examining physiological mechanisms, epidemiological associations, and animal studies. Mechanisms between some foodborne hazards, such as H. pylori, and adverse pregnancy outcomes, e.g., gestational diabetes mellitus, or between nitrates and impaired thyroid function, are relatively well-studied. However, evidence on the effects of many other chemical hazards on metabolic and human health remains limited: for example, while arsenic exposure is associated with adverse birth outcomes, the limited availability of dose-response studies and other challenges limit ascertaining its causal role. Untangling these associations and physiological mechanisms is of high relevance for both high- as well as low- and middle-income countries. Emerging technologies and novel assessment techniques are needed to improve the detection and understanding of understudied and complex foodborne diseases, particularly those arising from chemical hazards. These evidence gaps are highlighted in this review, as well as the need for establishing surveillance systems for monitoring foodborne diseases and metabolic health outcomes across populations.</p>","PeriodicalId":519903,"journal":{"name":"BMC global and public health","volume":"3 1","pages":"31"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11980346/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC global and public health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s44263-025-00150-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Access to safe and nutritious food is key to ensuring health and well-being and is critical to meeting the United Nations' Sustainable Development Goals. However, a synthesis of the associations between foodborne illness and malnutrition, such as metabolic health, remains a gap in the literature base. In this review, we summarized existing evidence on the impacts of biological and chemical hazards on nutrition-related health outcomes, specifically overweight and obesity, inflammation, metabolic disease, thyroid function, cancer development, and adverse birth outcomes, examining physiological mechanisms, epidemiological associations, and animal studies. Mechanisms between some foodborne hazards, such as H. pylori, and adverse pregnancy outcomes, e.g., gestational diabetes mellitus, or between nitrates and impaired thyroid function, are relatively well-studied. However, evidence on the effects of many other chemical hazards on metabolic and human health remains limited: for example, while arsenic exposure is associated with adverse birth outcomes, the limited availability of dose-response studies and other challenges limit ascertaining its causal role. Untangling these associations and physiological mechanisms is of high relevance for both high- as well as low- and middle-income countries. Emerging technologies and novel assessment techniques are needed to improve the detection and understanding of understudied and complex foodborne diseases, particularly those arising from chemical hazards. These evidence gaps are highlighted in this review, as well as the need for establishing surveillance systems for monitoring foodborne diseases and metabolic health outcomes across populations.