Whole-Genome Sequencing Reveals Individual and Cohort Level Insights into Chromosome 9p Syndromes.

Yingxi Wang, Eleanor I Sams, Rachel Slaugh, Sandra Crocker, Emily Cordova Hurtado, Sophia Tracy, Ying-Chen Claire Hou, Christopher Markovic, Kostandin Valle, Victoria Tate, Khadija Belhassan, Elizabeth Appelbaum, Titilope Akinwe, Rodrigo Starosta Tzovenos, Yang Cao, Amber Neilson, Yu Liu, Nathaniel Jensen, Reza Ghasemi, Tina Lindsay, Juana Manuel, Sophia Couteranis, Milinn Kremitzki, Jack Ustanik, Thomas Antonacci, Jeffrey K Ng, Andrew Emory, Laura Metz, Tracie DeLuca, Katherine N Lyons, Toni Sinnwell, Brianne Thomeczek, Kymme Wang, Nick Sisneros, Megha Muraleedharan, Anantha Kethireddy, Marco Corbo, Harsha Gowda, Katherine King, Christina A Gurnett, Susan K Dutcher, Catherine Gooch, Yang E Li, Matthew W Mitchell, Kevin A Peterson, Amjad Horani, Jill A Rosenfeld, Weimin Bi, Pawel Stankiewicz, Hsiao-Tuan Chao, Jennifer Posey, Christopher M Grochowski, Zain Dardas, Erik Puffenberger, Christopher E Pearson, Frank Kooy, Dale Annear, A Micheil Innes, Michael Heinz, Richard Head, Robert Fulton, Stephan Toutain, Lucinda Antonacci-Fulton, Xiaoxia Cui, Robi D Mitra, F Sessions Cole, Julie Neidich, Patricia I Dickson, Jeffrey Milbrandt, Tychele N Turner
{"title":"Whole-Genome Sequencing Reveals Individual and Cohort Level Insights into Chromosome 9p Syndromes.","authors":"Yingxi Wang, Eleanor I Sams, Rachel Slaugh, Sandra Crocker, Emily Cordova Hurtado, Sophia Tracy, Ying-Chen Claire Hou, Christopher Markovic, Kostandin Valle, Victoria Tate, Khadija Belhassan, Elizabeth Appelbaum, Titilope Akinwe, Rodrigo Starosta Tzovenos, Yang Cao, Amber Neilson, Yu Liu, Nathaniel Jensen, Reza Ghasemi, Tina Lindsay, Juana Manuel, Sophia Couteranis, Milinn Kremitzki, Jack Ustanik, Thomas Antonacci, Jeffrey K Ng, Andrew Emory, Laura Metz, Tracie DeLuca, Katherine N Lyons, Toni Sinnwell, Brianne Thomeczek, Kymme Wang, Nick Sisneros, Megha Muraleedharan, Anantha Kethireddy, Marco Corbo, Harsha Gowda, Katherine King, Christina A Gurnett, Susan K Dutcher, Catherine Gooch, Yang E Li, Matthew W Mitchell, Kevin A Peterson, Amjad Horani, Jill A Rosenfeld, Weimin Bi, Pawel Stankiewicz, Hsiao-Tuan Chao, Jennifer Posey, Christopher M Grochowski, Zain Dardas, Erik Puffenberger, Christopher E Pearson, Frank Kooy, Dale Annear, A Micheil Innes, Michael Heinz, Richard Head, Robert Fulton, Stephan Toutain, Lucinda Antonacci-Fulton, Xiaoxia Cui, Robi D Mitra, F Sessions Cole, Julie Neidich, Patricia I Dickson, Jeffrey Milbrandt, Tychele N Turner","doi":"10.1101/2025.03.28.25324850","DOIUrl":null,"url":null,"abstract":"<p><p>Previous genomic efforts on chromosome 9p deletion and duplication syndromes have utilized low resolution strategies (i.e., karyotypes, chromosome microarrays). We present the first large-scale whole-genome sequencing (WGS) study of 100 individuals from families with 9p-related syndromes including 85 unrelated probands through the 9P-ARCH (<b>A</b>dvanced <b>R</b>esearch in <b>C</b>hromosomal <b>H</b>ealth: Genomic, Phenotypic, and Functional Aspects of <b>9p</b>-Related syndromes) research network. We analyzed the genomic architecture of these syndromes, highlighting fundamental features and their commonalities and differences across individuals. This work includes a machine-learning model that predicts 9p deletion syndrome from gene copy number estimates using WGS data. Two Late Replicating Regions (LRR1 [a previously un-named human fragile site], LRR2) were identified that contain most structural variant breakpoints in 9p deletion syndrome pointing to replication-based issues in structural variant formation. Furthermore, we show the utility of using WGS information to obtain a comprehensive understanding of 9p-related variation in an individual with complex structural variation where chromothripsis is the likely mechanism. Genes on 9p were prioritized based on statistical assessment of human genomic variation. Furthermore, through application of spatial transcriptomics to embryonic mouse tissue we examined 9p-gene expression in craniofacial and brain development. Through these strategies, we identified 24 important genes for the majority (83%) of individuals with 9p deletion syndrome including <i>AK3, BRD10, CD274, CDC37L1, DMRT1, DMRT2, DMRT3, DOCK8, GLIS3, JAK2, KANK1, KDM4C, PLPP6, PTPRD, PUM3, RANBP6, RCL1</i>, <i>RFX3</i>, <i>RIC1</i>, <i>SLC1A1</i>, <i>SMARCA2</i>, <i>UHRF2</i>, <i>VLDLR</i>, and <i>ZNG1A</i>. Two genes (<i>AK3</i>, <i>ZNG1A</i>) are involved in mitochondrial function and testing of the mitochondrial genome revealed excess copy number in individuals with 9p deletion syndrome. This study presents the most comprehensive genomic analysis of 9p-related syndromes to date, with plans for further expansion through our 9P-ARCH research network.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11974940/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.03.28.25324850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Previous genomic efforts on chromosome 9p deletion and duplication syndromes have utilized low resolution strategies (i.e., karyotypes, chromosome microarrays). We present the first large-scale whole-genome sequencing (WGS) study of 100 individuals from families with 9p-related syndromes including 85 unrelated probands through the 9P-ARCH (Advanced Research in Chromosomal Health: Genomic, Phenotypic, and Functional Aspects of 9p-Related syndromes) research network. We analyzed the genomic architecture of these syndromes, highlighting fundamental features and their commonalities and differences across individuals. This work includes a machine-learning model that predicts 9p deletion syndrome from gene copy number estimates using WGS data. Two Late Replicating Regions (LRR1 [a previously un-named human fragile site], LRR2) were identified that contain most structural variant breakpoints in 9p deletion syndrome pointing to replication-based issues in structural variant formation. Furthermore, we show the utility of using WGS information to obtain a comprehensive understanding of 9p-related variation in an individual with complex structural variation where chromothripsis is the likely mechanism. Genes on 9p were prioritized based on statistical assessment of human genomic variation. Furthermore, through application of spatial transcriptomics to embryonic mouse tissue we examined 9p-gene expression in craniofacial and brain development. Through these strategies, we identified 24 important genes for the majority (83%) of individuals with 9p deletion syndrome including AK3, BRD10, CD274, CDC37L1, DMRT1, DMRT2, DMRT3, DOCK8, GLIS3, JAK2, KANK1, KDM4C, PLPP6, PTPRD, PUM3, RANBP6, RCL1, RFX3, RIC1, SLC1A1, SMARCA2, UHRF2, VLDLR, and ZNG1A. Two genes (AK3, ZNG1A) are involved in mitochondrial function and testing of the mitochondrial genome revealed excess copy number in individuals with 9p deletion syndrome. This study presents the most comprehensive genomic analysis of 9p-related syndromes to date, with plans for further expansion through our 9P-ARCH research network.

全基因组测序揭示了染色体9p综合征的个体和队列水平。
先前对染色体9p缺失和重复综合征的基因组研究采用了低分辨率策略(即核型、染色体微阵列)。我们通过9p- arch (C染色体H健康的高级研究:9p相关综合征的基因组、表型和功能方面)研究网络,首次对来自9p相关综合征家庭的100名个体进行了大规模的全基因组测序(WGS)研究,其中包括85个不相关的先证。我们分析了这些综合征的基因组结构,强调了基本特征及其在个体之间的共性和差异。这项工作包括一个机器学习模型,该模型使用WGS数据从基因拷贝数估计中预测9p缺失综合征。两个晚期复制区(LRR1[先前未命名的人类脆弱位点],LRR2)在9p缺失综合征中包含大多数结构变异断点,指出结构变异形成中基于复制的问题。此外,我们展示了使用WGS信息的效用,以获得对具有复杂结构变异的个体中9p相关变异的全面理解,其中染色体断裂是可能的机制。基于人类基因组变异的统计评估,对9p上的基因进行了优先排序。此外,通过空间转录组学在胚胎小鼠组织中的应用,我们检测了9p基因在颅面和大脑发育中的表达。通过这些策略,我们确定了大多数(83%)9p缺失综合征个体的24个重要基因,包括AK3、BRD10、CD274、CDC37L1、DMRT1、DMRT2、DMRT3、DOCK8、GLIS3、JAK2、KANK1、KDM4C、PLPP6、PTPRD、PUM3、RANBP6、RCL1、RFX3、RIC1、SLC1A1、SMARCA2、UHRF2、VLDLR和ZNG1A。两个基因(AK3, ZNG1A)参与线粒体功能,线粒体基因组检测显示9p缺失综合征患者的拷贝数过多。这项研究提出了迄今为止最全面的9p相关综合征的基因组分析,并计划通过我们的9P-ARCH研究网络进一步扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信