The Role of Artificial Intelligence for Early Diagnostic Tools of Autism Spectrum Disorder: A Systematic Review.

IF 1.3 Q3 PEDIATRICS
Purboyo Solek, Eka Nurfitri, Indra Sahril, Taufan Prasetya, Anggia Farrah Rizqiamuti, Burhan Burhan, Irma Rachmawati, Uni Gamayani, Kusnandi Rusmil, Lukman Ade Chandra, Irvan Afriandi, Kevin Gunawan
{"title":"The Role of Artificial Intelligence for Early Diagnostic Tools of Autism Spectrum Disorder: A Systematic Review.","authors":"Purboyo Solek, Eka Nurfitri, Indra Sahril, Taufan Prasetya, Anggia Farrah Rizqiamuti, Burhan Burhan, Irma Rachmawati, Uni Gamayani, Kusnandi Rusmil, Lukman Ade Chandra, Irvan Afriandi, Kevin Gunawan","doi":"10.5152/TurkArchPediatr.2025.24183","DOIUrl":null,"url":null,"abstract":"<p><p>Objective: Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by challenges in social communication and repetitive behaviors. This systematic review examines the application of artificial intelligence (AI) in diagnosing ASD, focusing on pediatric populations aged 0-18 years. Materials and methods: A systematic review was conducted following Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 guidelines. Inclusion criteria encompassed studies applying AI techniques for ASD diagnosis, primarily evaluated using metriclike accuracy. Non-English articles and studies not focusing on diagnostic applications were excluded. The literature search covered PubMed, ScienceDirect, CENTRAL, ProQuest, Web of Science, and Google Scholar up to November 9, 2024. Bias assessment was performed using the Joanna Briggs Institute checklist for critical appraisal. Results: The review included 25 studies. These studies explored AI-driven approaches that demonstrated high accuracy in classifying ASD using various data modalities, including visual (facial, home videos, eye-tracking), motor function, behavioral, microbiome, genetic, and neuroimaging data. Key findings highlight the efficacy of AI in analyzing complex datasets, identifying subtle ASD markers, and potentially enabling earlier intervention. The studies showed improved diagnostic accuracy, reduced assessment time, and enhanced predictive capabilities. Conclusion: The integration of AI technologies in ASD diagnosis presents a promising frontier for enhancing diagnostic accuracy, efficiency, and early detection. While these tools can increase accessibility to ASD screening in underserved areas, challenges related to data quality, privacy, ethics, and clinical integration remain. Future research should focus on applying diverse AI techniques to large populations for comparative analysis to develop more robust diagnostic models.</p>","PeriodicalId":75267,"journal":{"name":"Turkish archives of pediatrics","volume":"60 2","pages":"126-140"},"PeriodicalIF":1.3000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11963361/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish archives of pediatrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5152/TurkArchPediatr.2025.24183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PEDIATRICS","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by challenges in social communication and repetitive behaviors. This systematic review examines the application of artificial intelligence (AI) in diagnosing ASD, focusing on pediatric populations aged 0-18 years. Materials and methods: A systematic review was conducted following Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 guidelines. Inclusion criteria encompassed studies applying AI techniques for ASD diagnosis, primarily evaluated using metriclike accuracy. Non-English articles and studies not focusing on diagnostic applications were excluded. The literature search covered PubMed, ScienceDirect, CENTRAL, ProQuest, Web of Science, and Google Scholar up to November 9, 2024. Bias assessment was performed using the Joanna Briggs Institute checklist for critical appraisal. Results: The review included 25 studies. These studies explored AI-driven approaches that demonstrated high accuracy in classifying ASD using various data modalities, including visual (facial, home videos, eye-tracking), motor function, behavioral, microbiome, genetic, and neuroimaging data. Key findings highlight the efficacy of AI in analyzing complex datasets, identifying subtle ASD markers, and potentially enabling earlier intervention. The studies showed improved diagnostic accuracy, reduced assessment time, and enhanced predictive capabilities. Conclusion: The integration of AI technologies in ASD diagnosis presents a promising frontier for enhancing diagnostic accuracy, efficiency, and early detection. While these tools can increase accessibility to ASD screening in underserved areas, challenges related to data quality, privacy, ethics, and clinical integration remain. Future research should focus on applying diverse AI techniques to large populations for comparative analysis to develop more robust diagnostic models.

人工智能在自闭症谱系障碍早期诊断工具中的作用:系统综述。
目的:自闭症谱系障碍(Autism Spectrum Disorder, ASD)是一种复杂的神经发育疾病,其特征是社交障碍和重复性行为。本系统综述探讨了人工智能(AI)在诊断ASD中的应用,重点是0-18岁的儿科人群。材料和方法:根据2020年系统评价和荟萃分析指南的首选报告项目进行了系统评价。纳入标准包括将人工智能技术应用于ASD诊断的研究,主要使用度量精度进行评估。非英语文章和不关注诊断应用的研究被排除在外。截至2024年11月9日,文献检索覆盖PubMed、ScienceDirect、CENTRAL、ProQuest、Web of Science和b谷歌Scholar。偏见评估使用乔安娜布里格斯研究所的关键评估清单进行。结果:纳入25项研究。这些研究探索了人工智能驱动的方法,这些方法使用各种数据模式,包括视觉(面部、家庭视频、眼动追踪)、运动功能、行为、微生物组、遗传和神经成像数据,在对ASD进行分类方面表现出很高的准确性。关键发现强调了人工智能在分析复杂数据集、识别微妙的ASD标记以及潜在的早期干预方面的功效。研究表明,诊断准确性提高,评估时间缩短,预测能力增强。结论:人工智能技术在ASD诊断中的应用在提高诊断准确性、效率和早期发现方面具有广阔的应用前景。虽然这些工具可以在服务不足的地区增加ASD筛查的可及性,但与数据质量、隐私、伦理和临床整合相关的挑战仍然存在。未来的研究应侧重于将不同的人工智能技术应用于大量人群进行比较分析,以开发更强大的诊断模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信