Nasal pathobiont abundance is a moderate feedlot-dependent indicator of bovine respiratory disease in beef cattle.

IF 4.9 Q1 MICROBIOLOGY
Ruth Eunice Centeno-Delphia, Natalie Glidden, Erica Long, Audrey Ellis, Sarah Hoffman, Kara Mosier, Noelmi Ulloa, Johnnie Junior Cheng, Josiah Levi Davidson, Suraj Mohan, Mohamed Kamel, Josh I Szasz, Jon Schoonmaker, Jennifer Koziol, Jacquelyn P Boerman, Aaron Ault, Mohit S Verma, Timothy A Johnson
{"title":"Nasal pathobiont abundance is a moderate feedlot-dependent indicator of bovine respiratory disease in beef cattle.","authors":"Ruth Eunice Centeno-Delphia, Natalie Glidden, Erica Long, Audrey Ellis, Sarah Hoffman, Kara Mosier, Noelmi Ulloa, Johnnie Junior Cheng, Josiah Levi Davidson, Suraj Mohan, Mohamed Kamel, Josh I Szasz, Jon Schoonmaker, Jennifer Koziol, Jacquelyn P Boerman, Aaron Ault, Mohit S Verma, Timothy A Johnson","doi":"10.1186/s42523-025-00387-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Bovine respiratory disease (BRD) poses a persistent challenge in the beef cattle industry, impacting both animal health and economic aspects. Several risk factors make an animal susceptible to BRD, including bacteria such as Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, and Mycoplasma bovis. Despite efforts to characterize and quantify these bacteria in the nasal cavity for disease diagnosis, more research is needed to understand if there is a pathobiont abundance threshold for clinical signs of respiratory disease, and if the results are similar across feedlots. This study aims to compare the nasal microbiome community diversity and composition, along with the abundance of four bacterial pathogens and associated serotypes, in apparently healthy and BRD-affected beef cattle. Nasal swabs were collected from four beef feedlots across the US, covering the years 2019 to 2022. The study included post-weaned beef cattle with diverse housing conditions.</p><p><strong>Results: </strong>Quantification of BRD-associated pathogens effectively distinguished BRD-affected from apparently healthy beef cattle, surpassing the efficacy of 16S rRNA gene sequencing of the nasal microbiome community. Specifically, H. somni, M. bovis, and M. haemolytica had higher abundance in the BRD-affected group. Utilizing the abundance of these pathobionts and analyzing their combined abundance with machine learning models resulted in an accuracy of approximately 63% for sample classification into disease status. Moreover, there were no significant differences in nasal microbiome diversity (alpha and beta) between BRD-affected and apparently healthy cattle; instead, differences were detected between feedlots.</p><p><strong>Conclusions: </strong>Notably, this study sheds light on the beef cattle nasal microbiome community composition, revealing specific differences between BRD-affected and apparently healthy cattle. Pathobiont abundance was increased in some, but not all farms. Nonetheless, more research is needed to determine if these differences are consistent across other studies. Additionally, future research should consider bacterial-viral interactions in the beef nasal metagenome.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":"7 1","pages":"27"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11909826/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal microbiome","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42523-025-00387-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Bovine respiratory disease (BRD) poses a persistent challenge in the beef cattle industry, impacting both animal health and economic aspects. Several risk factors make an animal susceptible to BRD, including bacteria such as Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, and Mycoplasma bovis. Despite efforts to characterize and quantify these bacteria in the nasal cavity for disease diagnosis, more research is needed to understand if there is a pathobiont abundance threshold for clinical signs of respiratory disease, and if the results are similar across feedlots. This study aims to compare the nasal microbiome community diversity and composition, along with the abundance of four bacterial pathogens and associated serotypes, in apparently healthy and BRD-affected beef cattle. Nasal swabs were collected from four beef feedlots across the US, covering the years 2019 to 2022. The study included post-weaned beef cattle with diverse housing conditions.

Results: Quantification of BRD-associated pathogens effectively distinguished BRD-affected from apparently healthy beef cattle, surpassing the efficacy of 16S rRNA gene sequencing of the nasal microbiome community. Specifically, H. somni, M. bovis, and M. haemolytica had higher abundance in the BRD-affected group. Utilizing the abundance of these pathobionts and analyzing their combined abundance with machine learning models resulted in an accuracy of approximately 63% for sample classification into disease status. Moreover, there were no significant differences in nasal microbiome diversity (alpha and beta) between BRD-affected and apparently healthy cattle; instead, differences were detected between feedlots.

Conclusions: Notably, this study sheds light on the beef cattle nasal microbiome community composition, revealing specific differences between BRD-affected and apparently healthy cattle. Pathobiont abundance was increased in some, but not all farms. Nonetheless, more research is needed to determine if these differences are consistent across other studies. Additionally, future research should consider bacterial-viral interactions in the beef nasal metagenome.

鼻腔病原菌数量是肉牛呼吸道疾病的一个中度饲养指标。
背景:牛呼吸道疾病(BRD)对肉牛行业构成了持续的挑战,影响着动物健康和经济方面。一些危险因素使动物易患BRD,包括溶血性血友病、多杀性巴氏杆菌、嗜病组织菌和牛支原体等细菌。尽管努力表征和量化鼻腔中的这些细菌以用于疾病诊断,但需要更多的研究来了解是否存在呼吸道疾病临床症状的病原体丰度阈值,以及不同饲养场的结果是否相似。本研究旨在比较表面健康和受brd影响的肉牛的鼻腔微生物群落多样性和组成,以及四种细菌病原体的丰度和相关血清型。从2019年至2022年期间,从美国四个牛肉饲养场收集了鼻拭子。该研究包括断奶后的肉牛,饲养条件不同。结果:brd相关病原体的定量分析能够有效区分受brd影响的肉牛与表面健康的肉牛,优于鼻腔微生物群落16S rRNA基因测序的效果。具体来说,血吸虫、牛分枝杆菌和溶血分枝杆菌在brd感染组中有较高的丰度。利用这些病原体的丰度,并利用机器学习模型分析它们的联合丰度,将样本分类为疾病状态的准确率约为63%。此外,brd感染牛和表面健康牛的鼻腔微生物群多样性(α和β)无显著差异;相反,在饲养场之间检测到差异。结论:值得注意的是,本研究揭示了肉牛鼻腔微生物群落组成,揭示了brd感染牛和表面健康牛之间的具体差异。一些农场的病原菌丰度有所增加,但并非所有农场都有。然而,需要更多的研究来确定这些差异是否在其他研究中是一致的。此外,未来的研究应考虑牛肉鼻宏基因组中细菌-病毒的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信