Si Yang, Ying Yang, Linlin Xu, Chaoju Hao, Jiaxiang Chen
{"title":"DAPK3 is Essential for DBP-Induced Autophagy of Mouse Leydig Cells","authors":"Si Yang, Ying Yang, Linlin Xu, Chaoju Hao, Jiaxiang Chen","doi":"10.1002/advs.202413936","DOIUrl":null,"url":null,"abstract":"<p>Dibutyl phthalate (DBP) has been widely used in the manufacture of various daily and industrial products. As one of the most important endocrine disruptors, DBP has male reproductive toxicity and can lead to testicular dysfunction. In view of the fact that Leydig cells are important functional and structural units in the testis, their damage will affect testicular function. However, the underlying mechanism of DBP-caused damage to mouse Leydig cells remains elusive. In the study, it is confirmed that DBP can promote the expression of death-associated protein kinase 3 (DAPK3), thereby inducing autophagy of mouse Leydig cells by using in vivo and in vitro experiments. Also, bioinformatics analysis and molecular biology experimental techniques are utilized to further demonstrate that DBP-induced upregulation of DAPK3 results from both the activated transcription by specific protein 2 (Sp2) and the decreased ubiquitination and degradation by parkin RBR E3 ubiquitin-protein ligase (PRKN). Interestingly, melatonin can inhibit both Sp2/DAPK3 and PRKN/DAPK3 signaling pathways by inhibiting oxidative stress, thereby alleviating DBP-induced autophagy of mouse Leydig cells. Overall, the study unravels a novel regulatory mechanism of DBP-induced autophagy of mouse Leydig cells and identifies DAPK3 as a potential therapeutic target for DBP-caused damage to the male reproductive system.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 17","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202413936","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/advs.202413936","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Dibutyl phthalate (DBP) has been widely used in the manufacture of various daily and industrial products. As one of the most important endocrine disruptors, DBP has male reproductive toxicity and can lead to testicular dysfunction. In view of the fact that Leydig cells are important functional and structural units in the testis, their damage will affect testicular function. However, the underlying mechanism of DBP-caused damage to mouse Leydig cells remains elusive. In the study, it is confirmed that DBP can promote the expression of death-associated protein kinase 3 (DAPK3), thereby inducing autophagy of mouse Leydig cells by using in vivo and in vitro experiments. Also, bioinformatics analysis and molecular biology experimental techniques are utilized to further demonstrate that DBP-induced upregulation of DAPK3 results from both the activated transcription by specific protein 2 (Sp2) and the decreased ubiquitination and degradation by parkin RBR E3 ubiquitin-protein ligase (PRKN). Interestingly, melatonin can inhibit both Sp2/DAPK3 and PRKN/DAPK3 signaling pathways by inhibiting oxidative stress, thereby alleviating DBP-induced autophagy of mouse Leydig cells. Overall, the study unravels a novel regulatory mechanism of DBP-induced autophagy of mouse Leydig cells and identifies DAPK3 as a potential therapeutic target for DBP-caused damage to the male reproductive system.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.