The interaction of phenylphosphonic acid with the surface of goethite: isotherms, kinetics, electrophoretic mobility and ATR-FTIR spectroscopy

IF 7.6 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Mariana B. Gentile, Sebastián R. Gómez, Marcelo J. Avena, Carina V. Luengo
{"title":"The interaction of phenylphosphonic acid with the surface of goethite: isotherms, kinetics, electrophoretic mobility and ATR-FTIR spectroscopy","authors":"Mariana B. Gentile, Sebastián R. Gómez, Marcelo J. Avena, Carina V. Luengo","doi":"10.1016/j.envpol.2025.125938","DOIUrl":null,"url":null,"abstract":"The increased industrial use of phosphorus-containing substances, such as phenylphosphonic (PhP) acid, have raised significant environmental concerns. This study investigates the interaction of PhP with the surface of goethite, a ubiquitous mineral in soils and natural waters. Adsorption kinetics and isotherms are employed to examine the dynamic and equilibrium conditions of the adsorption process. DFT calculations, ATR-FTIR spectroscopy in a flow cell, and electrophoretic mobility measurements are used to determine the ionization of PhP and the type of binding involved in the PhP-goethite interaction. PhP adsorption decreased by increasing pH. Batch adsorption kinetics coincide with results from ATR-FTIR, showing that the rate-controlling step is the bond formation between PhP and the surface. ATR-FTIR with the flow cell proves to be very powerful for elucidating the process, because the time evolution of the adsorption extent and identity of the adsorbed species can be simultaneously tracked. Regardless of PhP speciation in solution and adsorption time, the adsorbed species is consistently an inner-sphere surface complex, where the phosphonate group establishes a direct P-O-Fe bond with an Fe(III) cation on the surface. These findings provide a comprehensive understanding of the PhP-goethite interaction, offering valuable insights into the environmental mobility of PhP.","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"85 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envpol.2025.125938","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The increased industrial use of phosphorus-containing substances, such as phenylphosphonic (PhP) acid, have raised significant environmental concerns. This study investigates the interaction of PhP with the surface of goethite, a ubiquitous mineral in soils and natural waters. Adsorption kinetics and isotherms are employed to examine the dynamic and equilibrium conditions of the adsorption process. DFT calculations, ATR-FTIR spectroscopy in a flow cell, and electrophoretic mobility measurements are used to determine the ionization of PhP and the type of binding involved in the PhP-goethite interaction. PhP adsorption decreased by increasing pH. Batch adsorption kinetics coincide with results from ATR-FTIR, showing that the rate-controlling step is the bond formation between PhP and the surface. ATR-FTIR with the flow cell proves to be very powerful for elucidating the process, because the time evolution of the adsorption extent and identity of the adsorbed species can be simultaneously tracked. Regardless of PhP speciation in solution and adsorption time, the adsorbed species is consistently an inner-sphere surface complex, where the phosphonate group establishes a direct P-O-Fe bond with an Fe(III) cation on the surface. These findings provide a comprehensive understanding of the PhP-goethite interaction, offering valuable insights into the environmental mobility of PhP.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Pollution
Environmental Pollution 环境科学-环境科学
CiteScore
16.00
自引率
6.70%
发文量
2082
审稿时长
2.9 months
期刊介绍: Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health. Subject areas include, but are not limited to: • Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies; • Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change; • Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects; • Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects; • Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest; • New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信