Simultaneous Visualization of Dynamical and Static Tactile Perception Using Piezoelectric-Ultrasonic Bimodal Electronic Skin Based on In Situ Polarized PVDF–TrFE/2DBP Composites and the TFT Array
IF 8.3 2区 材料科学Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Simultaneous Visualization of Dynamical and Static Tactile Perception Using Piezoelectric-Ultrasonic Bimodal Electronic Skin Based on In Situ Polarized PVDF–TrFE/2DBP Composites and the TFT Array","authors":"Fuyang Wang, Pengfei Yang, Wei Liu, Zhiqiang Li, Zhao Wang, Yong Xiang, Qian Zhang, Xiaoran Hu","doi":"10.1021/acsami.4c21925","DOIUrl":null,"url":null,"abstract":"The key to realizing completed bionic tactile perception of human skin using electronic skin relies on simultaneously distinguishing dynamic and static stimuli and restoring their characteristic information, which is realized by integration of several individual sensors but remains certain limitations including large physical size and high energy consumption. In this study, a piezoelectric-ultrasonic bimodal electronic skin (PUVE) based on <i>in situ</i> polarized PVDF–TrFE/2DBP composites and a thin-film transistor (TFT) array is fabricated. The incorporation of 2DBP into the PVDF–TrFE film and the <i>in situ</i> polarization approach provide excellent piezoelectric and ultrasonic performances of PVDF–TrFE/2DBP composites. PUVE has an ultrahigh sensitivity of 3.2 mV kPa<sup>–1</sup> over a wide pressure (0–310 kPa) range, with excellent spatial resolution (50 μm) and response time (40 ms). Meanwhile, the PUVE demonstrated outstanding repeatability and bending stability in 1500 cycles of cyclic pressure and 4000 cycles of 180° bending. The integrated piezoelectric and ultrasonic functions of PUVE can respond individually to dynamic and static tactile stimuli to ensure perceiving and decoupling of the dynamical and static mechanical signals with one single sensor. The PVDF–TrFE/2DBP composites is further integrated with the TFT array, realizing visualization function of contacting objects and restoring their characteristic information including the texture and location. Thus, the PUVE is expected to have a wide range of applications in intelligent robots and human prostheses.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"10 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c21925","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The key to realizing completed bionic tactile perception of human skin using electronic skin relies on simultaneously distinguishing dynamic and static stimuli and restoring their characteristic information, which is realized by integration of several individual sensors but remains certain limitations including large physical size and high energy consumption. In this study, a piezoelectric-ultrasonic bimodal electronic skin (PUVE) based on in situ polarized PVDF–TrFE/2DBP composites and a thin-film transistor (TFT) array is fabricated. The incorporation of 2DBP into the PVDF–TrFE film and the in situ polarization approach provide excellent piezoelectric and ultrasonic performances of PVDF–TrFE/2DBP composites. PUVE has an ultrahigh sensitivity of 3.2 mV kPa–1 over a wide pressure (0–310 kPa) range, with excellent spatial resolution (50 μm) and response time (40 ms). Meanwhile, the PUVE demonstrated outstanding repeatability and bending stability in 1500 cycles of cyclic pressure and 4000 cycles of 180° bending. The integrated piezoelectric and ultrasonic functions of PUVE can respond individually to dynamic and static tactile stimuli to ensure perceiving and decoupling of the dynamical and static mechanical signals with one single sensor. The PVDF–TrFE/2DBP composites is further integrated with the TFT array, realizing visualization function of contacting objects and restoring their characteristic information including the texture and location. Thus, the PUVE is expected to have a wide range of applications in intelligent robots and human prostheses.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.