{"title":"Activity Regulation of a Glutamine Amidotransferase Bienzyme Complex by Substrate-Induced Subunit Interface Expansion","authors":"Franziska Jasmin Funke, Sandra Schlee, Isabel Bento, Gleb Bourenkov, Reinhard Sterner, Matthias Wilmanns","doi":"10.1021/acscatal.4c07438","DOIUrl":null,"url":null,"abstract":"Glutamine amidotransferases are multienzyme machineries in which reactive ammonia is generated by a glutaminase and then transferred through a sequestered protein tunnel to a synthase active site for incorporation into diverse metabolites. To avoid wasteful metabolite consumption, there is a requirement for synchronized catalysis, but any generally applicable mechanistic insight is still lacking. As synthase activity depends on glutamine turnover, we investigated possible mechanisms controlling glutaminase catalysis using aminodeoxychorismate synthase involved in folate biosynthesis as a model. By analyzing this system in distinct states of catalysis, we found that incubation with glutamine leads to a subunit interface expansion by one-third of its original area. These changes completely enclose the glutaminase active site for sequestered catalysis and the subsequent transport of volatile ammonia to the synthase active site. In view of similar rearrangements in other glutamine amidotransferases, our observations may provide a general mechanism for the catalysis synchronization of this multienzyme family.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"29 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.4c07438","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Glutamine amidotransferases are multienzyme machineries in which reactive ammonia is generated by a glutaminase and then transferred through a sequestered protein tunnel to a synthase active site for incorporation into diverse metabolites. To avoid wasteful metabolite consumption, there is a requirement for synchronized catalysis, but any generally applicable mechanistic insight is still lacking. As synthase activity depends on glutamine turnover, we investigated possible mechanisms controlling glutaminase catalysis using aminodeoxychorismate synthase involved in folate biosynthesis as a model. By analyzing this system in distinct states of catalysis, we found that incubation with glutamine leads to a subunit interface expansion by one-third of its original area. These changes completely enclose the glutaminase active site for sequestered catalysis and the subsequent transport of volatile ammonia to the synthase active site. In view of similar rearrangements in other glutamine amidotransferases, our observations may provide a general mechanism for the catalysis synchronization of this multienzyme family.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.