Floquet evolution of the q -deformed SU(3)1 Yang-Mills theory on a two-leg ladder

IF 5 2区 物理与天体物理 Q1 Physics and Astronomy
Tomoya Hayata, Yoshimasa Hidaka
{"title":"Floquet evolution of the q -deformed SU(3)1 Yang-Mills theory on a two-leg ladder","authors":"Tomoya Hayata, Yoshimasa Hidaka","doi":"10.1103/physrevd.111.034513","DOIUrl":null,"url":null,"abstract":"We simulate Floquet time evolution of a truncated SU(3) lattice Yang-Mills theory on a two-leg ladder geometry under open boundary conditions using IBM’s superconducting 156-qubit device ibm_fez. To this end, we derive the quantum spin representation of the lattice Yang-Mills theory and compose a quantum circuit carefully tailored to hardware, reducing the number of controlled-Z gates. Since it is still challenging to simulate Hamiltonian evolution in present noisy quantum processors, we make the step size in the Suzuki-Trotter decomposition very large and simulate thermalization dynamics in Floquet circuit composed of the Suzuki-Trotter evolution. We demonstrate that IBM’s Heron quantum processor can simulate, by error mitigation, Floquet thermalization dynamics in a large system consisting of 62 qubits. Our work would be a benchmark for further quantum simulations of lattice gauge theories using real devices. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"25 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.034513","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We simulate Floquet time evolution of a truncated SU(3) lattice Yang-Mills theory on a two-leg ladder geometry under open boundary conditions using IBM’s superconducting 156-qubit device ibm_fez. To this end, we derive the quantum spin representation of the lattice Yang-Mills theory and compose a quantum circuit carefully tailored to hardware, reducing the number of controlled-Z gates. Since it is still challenging to simulate Hamiltonian evolution in present noisy quantum processors, we make the step size in the Suzuki-Trotter decomposition very large and simulate thermalization dynamics in Floquet circuit composed of the Suzuki-Trotter evolution. We demonstrate that IBM’s Heron quantum processor can simulate, by error mitigation, Floquet thermalization dynamics in a large system consisting of 62 qubits. Our work would be a benchmark for further quantum simulations of lattice gauge theories using real devices. Published by the American Physical Society 2025
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信