Jitao Huang, Ze Luo, Zuopeng Xu, Yanxue Jiang, Jinsong Guo
{"title":"Interactions between N, P in the overlying water and flooding-induced decomposition of <i>Cynodon dactylon</i> in the water-level fluctuation zone.","authors":"Jitao Huang, Ze Luo, Zuopeng Xu, Yanxue Jiang, Jinsong Guo","doi":"10.3389/fpls.2025.1526507","DOIUrl":null,"url":null,"abstract":"<p><p>During flooding in the Water Level Fluctuation Zone (WLFZ), nutrient levels of nitrogen (N) and phosphorus (P) in the overlying water fluctuate due to soil nutrient release, impacting the decomposition of plants like <i>Cynodon dactylon</i>. However, limited research on the effects of these nutrient changes on plant nutrient release and water dynamics complicates accurate assessments of water quality impacts. This study used 8 water samples with varying initial nutrient levels to simulate N and P changes induced by WLFZ soil nutrients and examined the decomposition and nutrient dynamics of <i>Cynodon dactylon</i>. Results showed that flooding significantly increased initial levels of N and P, especially as particulate nitrogen (PN) and particulate phosphorus (PP), affecting both plant decomposition and nutrient dynamics in the water. After 60 days, <i>Cynodon dactylon</i> lost 47.97%-56.01% dry matter, 43.58%-54.48% total nitrogen (TN), and 14.28%-20.50% total phosphorus (TP). Initial PN and total dissolved nitrogen (TDN) promoted dry matter loss, PN and PP promoted TP loss, while PN and TDN inhibited TN loss. By day 60, no positive correlation was found between plant-released N and P and TN or TP in the overlying water. However, initial PP and PN levels were negatively correlated with TN and TP, indicating an inhibitory effect. Further analysis indicates that PN and PP released from the soil supported the formation of microbial aggregates, enhancing denitrification and phosphorus removal and thus improving water purification over time.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"16 ","pages":"1526507"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11847792/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2025.1526507","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
During flooding in the Water Level Fluctuation Zone (WLFZ), nutrient levels of nitrogen (N) and phosphorus (P) in the overlying water fluctuate due to soil nutrient release, impacting the decomposition of plants like Cynodon dactylon. However, limited research on the effects of these nutrient changes on plant nutrient release and water dynamics complicates accurate assessments of water quality impacts. This study used 8 water samples with varying initial nutrient levels to simulate N and P changes induced by WLFZ soil nutrients and examined the decomposition and nutrient dynamics of Cynodon dactylon. Results showed that flooding significantly increased initial levels of N and P, especially as particulate nitrogen (PN) and particulate phosphorus (PP), affecting both plant decomposition and nutrient dynamics in the water. After 60 days, Cynodon dactylon lost 47.97%-56.01% dry matter, 43.58%-54.48% total nitrogen (TN), and 14.28%-20.50% total phosphorus (TP). Initial PN and total dissolved nitrogen (TDN) promoted dry matter loss, PN and PP promoted TP loss, while PN and TDN inhibited TN loss. By day 60, no positive correlation was found between plant-released N and P and TN or TP in the overlying water. However, initial PP and PN levels were negatively correlated with TN and TP, indicating an inhibitory effect. Further analysis indicates that PN and PP released from the soil supported the formation of microbial aggregates, enhancing denitrification and phosphorus removal and thus improving water purification over time.
期刊介绍:
In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches.
Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.