The YTHDC1 reader protein recognizes and regulates the lncRNA MEG3 following its METTL3-mediated m6A methylation: a novel mechanism early during radiation-induced liver injury.
{"title":"The YTHDC1 reader protein recognizes and regulates the lncRNA MEG3 following its METTL3-mediated m<sup>6</sup>A methylation: a novel mechanism early during radiation-induced liver injury.","authors":"Gui-Yuan Song, Qing-Hua Yu, Xue-Kun Xing, Xin-Ming Fan, Si-Guang Xu, Wen-Bo Zhang, Yao-Yao Wu, Nan Zhang, Tian-Zhu Chao, Fei Wang, Cheng-Shi Ding, Cun-Yang Guo, Li Ma, Chang-Ye Sun, Shu-Yan Duan, Ping Xu","doi":"10.1038/s41419-025-07417-2","DOIUrl":null,"url":null,"abstract":"<p><p>While apoptotic cell death is known to be central to the pathogenesis of radiation-induced liver injury (RILI), the mechanistic basis for this apoptotic activity remains poorly understood. N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) modifications are the most common form of reversible methylation observed on lncRNAs in eukaryotic cells, with their presence leading to pronounced changes in the activity of a range of biological processes. The degree to which m<sup>6</sup>A modification plays a role in the induction of apoptotic cell death in response to ionizing radiation (IR) in the context of RILI remains to be established. Here, IR-induced apoptosis was found to significantly decrease the levels of m<sup>6</sup>A present, with a pronounced decrease in the expression of methyltransferase-like 3 (METTL3) at 2 d post radiation in vitro. From a mechanistic perspective, a methylated RNA immunoprecipitation assay found that lncRNA MEG3 was a major METTL3 target. The expression of MEG3 was upregulated via METTL3-mediated m<sup>6</sup>A in a process that was dependent on YTHDC1, ultimately reversing the miR-20b-mediated inhibition of BNIP2 expression. Together, these findings demonstrate that the responsivity of METTL3 activity to IR plays a role in IR-induced apoptotic cell death, leading to the reverse of miR-20b-mediated BNIP2 inhibition through the YTHDC1-dependent m<sup>6</sup>A modification of MEG3, suggesting that this process may play a central role in RILI incidence.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"16 1","pages":"127"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-025-07417-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
While apoptotic cell death is known to be central to the pathogenesis of radiation-induced liver injury (RILI), the mechanistic basis for this apoptotic activity remains poorly understood. N6-methyladenosine (m6A) modifications are the most common form of reversible methylation observed on lncRNAs in eukaryotic cells, with their presence leading to pronounced changes in the activity of a range of biological processes. The degree to which m6A modification plays a role in the induction of apoptotic cell death in response to ionizing radiation (IR) in the context of RILI remains to be established. Here, IR-induced apoptosis was found to significantly decrease the levels of m6A present, with a pronounced decrease in the expression of methyltransferase-like 3 (METTL3) at 2 d post radiation in vitro. From a mechanistic perspective, a methylated RNA immunoprecipitation assay found that lncRNA MEG3 was a major METTL3 target. The expression of MEG3 was upregulated via METTL3-mediated m6A in a process that was dependent on YTHDC1, ultimately reversing the miR-20b-mediated inhibition of BNIP2 expression. Together, these findings demonstrate that the responsivity of METTL3 activity to IR plays a role in IR-induced apoptotic cell death, leading to the reverse of miR-20b-mediated BNIP2 inhibition through the YTHDC1-dependent m6A modification of MEG3, suggesting that this process may play a central role in RILI incidence.
期刊介绍:
Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism.
Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following:
Experimental medicine
Cancer
Immunity
Internal medicine
Neuroscience
Cancer metabolism