Extreme Fire Spread Events Burn More Severely and Homogenize Postfire Landscapes in the Southwestern United States

IF 10.8 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION
Jessika R. McFarland, Jonathan D. Coop, Jared A. Balik, Kyle C. Rodman, Sean A. Parks, Camille S. Stevens-Rumann
{"title":"Extreme Fire Spread Events Burn More Severely and Homogenize Postfire Landscapes in the Southwestern United States","authors":"Jessika R. McFarland,&nbsp;Jonathan D. Coop,&nbsp;Jared A. Balik,&nbsp;Kyle C. Rodman,&nbsp;Sean A. Parks,&nbsp;Camille S. Stevens-Rumann","doi":"10.1111/gcb.70106","DOIUrl":null,"url":null,"abstract":"<p>Extreme fire spread events rapidly burn large areas with disproportionate impacts on people and ecosystems. Such events are associated with warmer and drier fire seasons and are expected to increase in the future. Our understanding of the landscape outcomes of extreme events is limited, particularly regarding whether they burn more severely or produce spatial patterns less conducive to ecosystem recovery. To assess relationships between fire spread rates and landscape burn severity patterns, we used satellite fire detections to create day-of-burning maps for 623 fires comprising 4267 single-day events within forested ecoregions of the southwestern United States. We related satellite-measured burn severity and a suite of high-severity patch metrics to daily area burned. Extreme fire spread events (defined here as burning &gt; 4900 ha/day) exhibited higher mean burn severity, a greater proportion of area burned severely, and increased like adjacencies between high-severity pixels. Furthermore, increasing daily area burned also resulted in greater distances within high-severity patches to live tree seed sources. High-severity patch size and total high-severity core area were substantially higher for fires containing one or more extreme spread events than for fires without an extreme event. Larger and more homogenous high-severity patches produced during extreme events can limit tree regeneration and set the stage for protracted forest conversion. These landscape outcomes are expected to be magnified under future climate scenarios, accelerating fire-driven forest loss and long-term ecological change.</p>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"31 2","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcb.70106","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70106","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

Extreme fire spread events rapidly burn large areas with disproportionate impacts on people and ecosystems. Such events are associated with warmer and drier fire seasons and are expected to increase in the future. Our understanding of the landscape outcomes of extreme events is limited, particularly regarding whether they burn more severely or produce spatial patterns less conducive to ecosystem recovery. To assess relationships between fire spread rates and landscape burn severity patterns, we used satellite fire detections to create day-of-burning maps for 623 fires comprising 4267 single-day events within forested ecoregions of the southwestern United States. We related satellite-measured burn severity and a suite of high-severity patch metrics to daily area burned. Extreme fire spread events (defined here as burning > 4900 ha/day) exhibited higher mean burn severity, a greater proportion of area burned severely, and increased like adjacencies between high-severity pixels. Furthermore, increasing daily area burned also resulted in greater distances within high-severity patches to live tree seed sources. High-severity patch size and total high-severity core area were substantially higher for fires containing one or more extreme spread events than for fires without an extreme event. Larger and more homogenous high-severity patches produced during extreme events can limit tree regeneration and set the stage for protracted forest conversion. These landscape outcomes are expected to be magnified under future climate scenarios, accelerating fire-driven forest loss and long-term ecological change.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Global Change Biology
Global Change Biology 环境科学-环境科学
CiteScore
21.50
自引率
5.20%
发文量
497
审稿时长
3.3 months
期刊介绍: Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health. Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信