Z-SSMNet: Zonal-aware Self-supervised Mesh Network for prostate cancer detection and diagnosis with Bi-parametric MRI

IF 5.4 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Yuan Yuan , Euijoon Ahn , Dagan Feng , Mohamed Khadra , Jinman Kim
{"title":"Z-SSMNet: Zonal-aware Self-supervised Mesh Network for prostate cancer detection and diagnosis with Bi-parametric MRI","authors":"Yuan Yuan ,&nbsp;Euijoon Ahn ,&nbsp;Dagan Feng ,&nbsp;Mohamed Khadra ,&nbsp;Jinman Kim","doi":"10.1016/j.compmedimag.2025.102510","DOIUrl":null,"url":null,"abstract":"<div><div>Bi-parametric magnetic resonance imaging (bpMRI) has become a pivotal modality in the detection and diagnosis of clinically significant prostate cancer (csPCa). Developing AI-based systems to identify csPCa using bpMRI can transform prostate cancer (PCa) management by improving efficiency and cost-effectiveness. However, current state-of-the-art methods using convolutional neural networks (CNNs) and Transformers are limited in learning in-plane and three-dimensional spatial information from anisotropic bpMRI. Their performances also depend on the availability of large, diverse, and well-annotated bpMRI datasets. To address these challenges, we propose the Zonal-aware Self-supervised Mesh Network (Z-SSMNet), which adaptively integrates multi-dimensional (2D/2.5D/3D) convolutions to learn dense intra-slice information and sparse inter-slice information of the anisotropic bpMRI in a balanced manner. We also propose a self-supervised learning (SSL) technique that effectively captures both intra-slice and inter-slice semantic information using large-scale unlabeled data. Furthermore, we constrain the network to focus on the zonal anatomical regions to improve the detection and diagnosis capability of csPCa. We conducted extensive experiments on the PI-CAI (Prostate Imaging - Cancer AI) dataset comprising 10000+ multi-center and multi-scanner data. Our Z-SSMNet excelled in both lesion-level detection (AP score of 0.633) and patient-level diagnosis (AUROC score of 0.881), securing the top position in the Open Development Phase of the PI-CAI challenge and maintained strong performance, achieving an AP score of 0.690 and an AUROC score of 0.909, and securing the second-place ranking in the Closed Testing Phase. These findings underscore the potential of AI-driven systems for csPCa diagnosis and management.</div></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"122 ","pages":"Article 102510"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611125000199","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Bi-parametric magnetic resonance imaging (bpMRI) has become a pivotal modality in the detection and diagnosis of clinically significant prostate cancer (csPCa). Developing AI-based systems to identify csPCa using bpMRI can transform prostate cancer (PCa) management by improving efficiency and cost-effectiveness. However, current state-of-the-art methods using convolutional neural networks (CNNs) and Transformers are limited in learning in-plane and three-dimensional spatial information from anisotropic bpMRI. Their performances also depend on the availability of large, diverse, and well-annotated bpMRI datasets. To address these challenges, we propose the Zonal-aware Self-supervised Mesh Network (Z-SSMNet), which adaptively integrates multi-dimensional (2D/2.5D/3D) convolutions to learn dense intra-slice information and sparse inter-slice information of the anisotropic bpMRI in a balanced manner. We also propose a self-supervised learning (SSL) technique that effectively captures both intra-slice and inter-slice semantic information using large-scale unlabeled data. Furthermore, we constrain the network to focus on the zonal anatomical regions to improve the detection and diagnosis capability of csPCa. We conducted extensive experiments on the PI-CAI (Prostate Imaging - Cancer AI) dataset comprising 10000+ multi-center and multi-scanner data. Our Z-SSMNet excelled in both lesion-level detection (AP score of 0.633) and patient-level diagnosis (AUROC score of 0.881), securing the top position in the Open Development Phase of the PI-CAI challenge and maintained strong performance, achieving an AP score of 0.690 and an AUROC score of 0.909, and securing the second-place ranking in the Closed Testing Phase. These findings underscore the potential of AI-driven systems for csPCa diagnosis and management.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.70
自引率
3.50%
发文量
71
审稿时长
26 days
期刊介绍: The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信