Plasmonic properties of gold nanoparticle arrays fabricated using a sequential dewetting process

IF 3.5 2区 物理与天体物理 Q2 PHYSICS, APPLIED
Gavin Farmer, Dmitrii Shymkiv, Arkadii Krokhin, Chris Littler, A. J. Syllaios, Usha Philipose
{"title":"Plasmonic properties of gold nanoparticle arrays fabricated using a sequential dewetting process","authors":"Gavin Farmer, Dmitrii Shymkiv, Arkadii Krokhin, Chris Littler, A. J. Syllaios, Usha Philipose","doi":"10.1063/5.0235523","DOIUrl":null,"url":null,"abstract":"A scalable, cost-effective technique to fabricate ordered gold nanoparticle arrays with fine control over nanoparticle size and interparticle distance is presented. The array is grown in the pores of an anodic aluminum oxide membrane by the solid-state dewetting process. Control over the nanoparticle size and spacing between particles was achieved by sequential metal deposition and annealing processes, yielding nanoparticles with diameters (D) ranging from 50 to 70 nm and corresponding interparticle distances ranging from 12 to 30 nm. The advantage of this technique is that the nanoparticle size, spherical shape, and hexagonal close-packed ordering of the array can be precisely controlled, allowing for fine tuning of the plasmonic absorption properties. The important parameters that determine the size, shape, and distribution of nanoparticles in the array are the template morphology (dimple geometry) and the thickness of the evaporated metal layer. Above a certain critical film thickness, the nanoparticles coalesce to form nano-islands. The significance of this work is that it provides a reliable technique to assemble metal nanoparticles into high density arrays, with good control over particle shape and distribution. Such arrays can be used to generate highly concentrated electromagnetic fields for plasmonic sensor applications.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"44 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0235523","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A scalable, cost-effective technique to fabricate ordered gold nanoparticle arrays with fine control over nanoparticle size and interparticle distance is presented. The array is grown in the pores of an anodic aluminum oxide membrane by the solid-state dewetting process. Control over the nanoparticle size and spacing between particles was achieved by sequential metal deposition and annealing processes, yielding nanoparticles with diameters (D) ranging from 50 to 70 nm and corresponding interparticle distances ranging from 12 to 30 nm. The advantage of this technique is that the nanoparticle size, spherical shape, and hexagonal close-packed ordering of the array can be precisely controlled, allowing for fine tuning of the plasmonic absorption properties. The important parameters that determine the size, shape, and distribution of nanoparticles in the array are the template morphology (dimple geometry) and the thickness of the evaporated metal layer. Above a certain critical film thickness, the nanoparticles coalesce to form nano-islands. The significance of this work is that it provides a reliable technique to assemble metal nanoparticles into high density arrays, with good control over particle shape and distribution. Such arrays can be used to generate highly concentrated electromagnetic fields for plasmonic sensor applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Physics Letters
Applied Physics Letters 物理-物理:应用
CiteScore
6.40
自引率
10.00%
发文量
1821
审稿时长
1.6 months
期刊介绍: Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology. In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics. APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field. Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信