Manganese-Loaded pH-Responsive DNA Hydrogels Enable Tg-Guided Thyroid Tumor Targeted Magnetic Resonance Imaging

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Qingyi Hu, Anwen Ren, Ximeng Zhang, Zimei Tang, Rong Wang, Dong-Yuan Wang, Tao Huang, Jie Liu, Jie Ming
{"title":"Manganese-Loaded pH-Responsive DNA Hydrogels Enable Tg-Guided Thyroid Tumor Targeted Magnetic Resonance Imaging","authors":"Qingyi Hu, Anwen Ren, Ximeng Zhang, Zimei Tang, Rong Wang, Dong-Yuan Wang, Tao Huang, Jie Liu, Jie Ming","doi":"10.1021/acsami.4c19676","DOIUrl":null,"url":null,"abstract":"The diagnosis of metastatic and recurrent occult thyroid cancer presents a significant challenge. This study introduces a DNA-Mn hydrogel (M-TDH) that specifically targets thyroglobulin (Tg). This nanogel is loaded with paramagnetic Mn<sup>2+</sup> for facilitating magnetic resonance (MR) imaging. As a cofactor of DNA polymerase, Mn<sup>2+</sup> promotes the extension of long-strand DNA and forms Mn<sub>2</sub>PPi nuclei with PPi<sup>4–</sup> in the system. The synthesis of M-TDH is achieved through Mn<sub>2</sub>PPi nucleation and growth with long-strand DNA acting as the structural framework. The X-scaffold functions as a junction point, thereby enhancing structural stability. The Tg aptamer sequence is incorporated into M-TDH, ensuring specific targeting of thyroid cancer cells. Furthermore, M-TDH demonstrates an extended residence time at the thyroid tumor site, thus increasing the duration of enhanced MR imaging. Overall, this study introduces an aptamer-based, thyroid tumor-targeted DNA nanogel for MR imaging diagnostic applications, with the potential to advance a multifunctional magnetic nanosystem toward clinical application.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"23 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c19676","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The diagnosis of metastatic and recurrent occult thyroid cancer presents a significant challenge. This study introduces a DNA-Mn hydrogel (M-TDH) that specifically targets thyroglobulin (Tg). This nanogel is loaded with paramagnetic Mn2+ for facilitating magnetic resonance (MR) imaging. As a cofactor of DNA polymerase, Mn2+ promotes the extension of long-strand DNA and forms Mn2PPi nuclei with PPi4– in the system. The synthesis of M-TDH is achieved through Mn2PPi nucleation and growth with long-strand DNA acting as the structural framework. The X-scaffold functions as a junction point, thereby enhancing structural stability. The Tg aptamer sequence is incorporated into M-TDH, ensuring specific targeting of thyroid cancer cells. Furthermore, M-TDH demonstrates an extended residence time at the thyroid tumor site, thus increasing the duration of enhanced MR imaging. Overall, this study introduces an aptamer-based, thyroid tumor-targeted DNA nanogel for MR imaging diagnostic applications, with the potential to advance a multifunctional magnetic nanosystem toward clinical application.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信