In-Sensor Computing with Visual-Tactile Perception Enabled by Mechano-Optical Artificial Synapse

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jiaxing Guo, Feng Guo, Huijun Zhao, Hang Yang, Xiaona Du, Fei Fan, Weiwei Liu, Yang Zhang, Dong Tu, Jianhua Hao
{"title":"In-Sensor Computing with Visual-Tactile Perception Enabled by Mechano-Optical Artificial Synapse","authors":"Jiaxing Guo, Feng Guo, Huijun Zhao, Hang Yang, Xiaona Du, Fei Fan, Weiwei Liu, Yang Zhang, Dong Tu, Jianhua Hao","doi":"10.1002/adma.202419405","DOIUrl":null,"url":null,"abstract":"In-sensor computing paradigm holds the promise of realizing rapid and low-power signal processing. Constructing crossmodal in-sensor computing systems to emulate human sensory and recognition capabilities has been a persistent pursuit for developing humanoid robotics. Here, an artificial mechano-optical synapse is reported to implement in-sensor dynamic computing with visual-tactile perception. By employing mechanoluminescence (ML) material, direct conversion of the mechanical signals into light emission is achieved and the light is transported to an adjacent photostimulated luminescence (PSL) layer without pre- and post-irradiation. The PSL layer acts as a photon reservoir as well as a processing unit for achieving in-memory computing. The approach based on ML coupled with PSL material is different from traditional circuit–constrained methods, enabling remote operation and easy accessibility. Individual and synergistic plasticity are elaborately investigated under force and light pulses, including paired-pulse facilitation, learning behavior, and short-term and long-term memory. A multisensory neural network is built for processing the obtained handwritten patterns with a tablet consisting of the device, achieving a recognition accuracy of up to 92.5%. Moreover, material identification has been explored based on visual-tactile sensing, with an accuracy rate of 98.6%. This work provides a promising strategy to construct in-sensor computing systems with crossmodal integration and recognition.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"38 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202419405","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In-sensor computing paradigm holds the promise of realizing rapid and low-power signal processing. Constructing crossmodal in-sensor computing systems to emulate human sensory and recognition capabilities has been a persistent pursuit for developing humanoid robotics. Here, an artificial mechano-optical synapse is reported to implement in-sensor dynamic computing with visual-tactile perception. By employing mechanoluminescence (ML) material, direct conversion of the mechanical signals into light emission is achieved and the light is transported to an adjacent photostimulated luminescence (PSL) layer without pre- and post-irradiation. The PSL layer acts as a photon reservoir as well as a processing unit for achieving in-memory computing. The approach based on ML coupled with PSL material is different from traditional circuit–constrained methods, enabling remote operation and easy accessibility. Individual and synergistic plasticity are elaborately investigated under force and light pulses, including paired-pulse facilitation, learning behavior, and short-term and long-term memory. A multisensory neural network is built for processing the obtained handwritten patterns with a tablet consisting of the device, achieving a recognition accuracy of up to 92.5%. Moreover, material identification has been explored based on visual-tactile sensing, with an accuracy rate of 98.6%. This work provides a promising strategy to construct in-sensor computing systems with crossmodal integration and recognition.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信