Dexamethasone-loaded platelet-inspired nanoparticles improve intracortical microelectrode recording performance.

Andrew Shoffstall, Longshun Li, Aniya Hartzler, Dhariyat Menendez-Lustri, Jichu Zhang, Alex Chen, Danny Lam, Baylee Traylor, Emma Quill, George Hoeferlin, Christa Pawlowski, Michael Bruckman, Sen A Gupta, Jeffrey Capadona
{"title":"Dexamethasone-loaded platelet-inspired nanoparticles improve intracortical microelectrode recording performance.","authors":"Andrew Shoffstall, Longshun Li, Aniya Hartzler, Dhariyat Menendez-Lustri, Jichu Zhang, Alex Chen, Danny Lam, Baylee Traylor, Emma Quill, George Hoeferlin, Christa Pawlowski, Michael Bruckman, Sen A Gupta, Jeffrey Capadona","doi":"10.21203/rs.3.rs-6018202/v1","DOIUrl":null,"url":null,"abstract":"<p><p>Long-term robust intracortical microelectrode (IME) neural recording quality is negatively affected by the neuroinflammatory response following microelectrode insertion. This adversely impacts brain-machine interface (BMI) performance for patients with neurological disorders or amputations. Recent studies suggest that the leakage of blood-brain barrier (BBB) and microhemorrhage caused by the IME insertions lead to the increased neuroinflammation and reduced neural recording performance. Additionally, a sustained presence of activated platelets and coagulation factors is found near the insertion site. Thus, we hypothesized that the systemic administration of dexamethasone sodium phosphate-loaded platelet-inspired nanoparticle (SPPINDEX) can improve the neural recording performance of intracortical microelectrodes (IMEs) by promoting hemostasis, facilitating blood-brain barrier (BBB) healing, and achieving implant-targeted drug delivery. Leveraging the hemostatic and coagulation factor-binding properties of the platelet-inspired nanoparticle (PIN) drug delivery platform, SPPINDEX treatment can initially attenuate the invasion of neuroinflammatory triggers into the brain parenchyma caused by insertion-induced microhemorrhages or a compromised BBB. Furthermore, targeted delivery of the anti-inflammatory drug dexamethasone sodium phosphate (DEXSP) to the implant site via these nanoparticles can attenuate ongoing neuroinflammation, enhancing overall therapeutic efficacy. Weekly treatment with SPPINDEX for 8 weeks significantly improved the recording capabilities of IMEs compared to platelet-inspired nanoparticles alone (PIN), free dexamethasone sodium phosphate (Free DEXSP), and a diluent control trehalose buffer (TH), as assessed through extracellular single-unit recordings. Immunohistochemical analyses of neuron density, activated microglia/macrophage density, astrocyte density, and BBB permeability suggest that the improved neural recording performance may be attributed to reduced neuron degeneration, activated microglia and astrocytes at the implant interface caused by the decreased infiltration of blood-derived proteins that trigger neuroinflammation and the therapeutic effects from DEXSP. Overall, SPPINDEX treatment promotes an anti-inflammatory environment that improves neuronal density and enhances recording performance.</p>","PeriodicalId":519972,"journal":{"name":"Research square","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11844648/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research square","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-6018202/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Long-term robust intracortical microelectrode (IME) neural recording quality is negatively affected by the neuroinflammatory response following microelectrode insertion. This adversely impacts brain-machine interface (BMI) performance for patients with neurological disorders or amputations. Recent studies suggest that the leakage of blood-brain barrier (BBB) and microhemorrhage caused by the IME insertions lead to the increased neuroinflammation and reduced neural recording performance. Additionally, a sustained presence of activated platelets and coagulation factors is found near the insertion site. Thus, we hypothesized that the systemic administration of dexamethasone sodium phosphate-loaded platelet-inspired nanoparticle (SPPINDEX) can improve the neural recording performance of intracortical microelectrodes (IMEs) by promoting hemostasis, facilitating blood-brain barrier (BBB) healing, and achieving implant-targeted drug delivery. Leveraging the hemostatic and coagulation factor-binding properties of the platelet-inspired nanoparticle (PIN) drug delivery platform, SPPINDEX treatment can initially attenuate the invasion of neuroinflammatory triggers into the brain parenchyma caused by insertion-induced microhemorrhages or a compromised BBB. Furthermore, targeted delivery of the anti-inflammatory drug dexamethasone sodium phosphate (DEXSP) to the implant site via these nanoparticles can attenuate ongoing neuroinflammation, enhancing overall therapeutic efficacy. Weekly treatment with SPPINDEX for 8 weeks significantly improved the recording capabilities of IMEs compared to platelet-inspired nanoparticles alone (PIN), free dexamethasone sodium phosphate (Free DEXSP), and a diluent control trehalose buffer (TH), as assessed through extracellular single-unit recordings. Immunohistochemical analyses of neuron density, activated microglia/macrophage density, astrocyte density, and BBB permeability suggest that the improved neural recording performance may be attributed to reduced neuron degeneration, activated microglia and astrocytes at the implant interface caused by the decreased infiltration of blood-derived proteins that trigger neuroinflammation and the therapeutic effects from DEXSP. Overall, SPPINDEX treatment promotes an anti-inflammatory environment that improves neuronal density and enhances recording performance.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信