{"title":"Roles of core <i>nosZ</i> denitrifiers in enhancing denitrification activity under long-term rice straw retention.","authors":"Shijie Zhang, Mengyao Hou, Bing Li, Panfeng Guan, Qing Chi, Hao Sun, Hangbo Xu, Dongjie Cui, Yupan Zhu","doi":"10.3389/fpls.2025.1541202","DOIUrl":null,"url":null,"abstract":"<p><p>The denitrification process is known to contribute to soil nitrogen (N) loss, which is strongly affected by fertilization strategies; however, the effects of distinct straw retention modes on soil denitrification activity have rarely been discriminated and the underlying mechanisms remain unclear. This study coupled field and incubation experiments to explore the characteristics of soil denitrification activity, soil and standing water physicochemical properties, and the abundance, community diversity, and co-occurrence network of <i>nosZ</i> denitrifiers, based on a paddy field implementing 10-year straw retention under a rice-wheat rotation system. Four straw retention treatments with equivalent chemical fertilizers were applied, namely no straw (NS), wheat straw only (WS), rice straw only (RS), and wheat and rice straw (WRS). Results indicated a significant increase (by 41.93-45.80% when compared to that with NS) in the soil denitrification activity with RS and WRS. Correspondingly, treatments with rice straw retention resulted in the development of a similar community composition (<i>P</i> < 0.05), structure (<i>P</i> = 0.001), and more positively interconnected network, as well as similar specific keystone taxa of <i>nosZ</i> denitrifiers, relative to those in non-rice straw mode. Under long-term rice straw retention conditions, the core <i>nosZ</i>-denitrifying phylogroups shifted (r = 0.83, <i>P</i> < 0.001), with the recruitment of keystone taxa from the phyla Bacteroidetes and Euryarchaeota playing a key role in enhancing denitrification activity and stimulating N loss. Accordingly, in a rice-wheat rotation field, the practice of wheat straw retention in a single season is recommended because it will not markedly sacrifice soil N availability impaired by the denitrification process.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"16 ","pages":"1541202"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11842374/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2025.1541202","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The denitrification process is known to contribute to soil nitrogen (N) loss, which is strongly affected by fertilization strategies; however, the effects of distinct straw retention modes on soil denitrification activity have rarely been discriminated and the underlying mechanisms remain unclear. This study coupled field and incubation experiments to explore the characteristics of soil denitrification activity, soil and standing water physicochemical properties, and the abundance, community diversity, and co-occurrence network of nosZ denitrifiers, based on a paddy field implementing 10-year straw retention under a rice-wheat rotation system. Four straw retention treatments with equivalent chemical fertilizers were applied, namely no straw (NS), wheat straw only (WS), rice straw only (RS), and wheat and rice straw (WRS). Results indicated a significant increase (by 41.93-45.80% when compared to that with NS) in the soil denitrification activity with RS and WRS. Correspondingly, treatments with rice straw retention resulted in the development of a similar community composition (P < 0.05), structure (P = 0.001), and more positively interconnected network, as well as similar specific keystone taxa of nosZ denitrifiers, relative to those in non-rice straw mode. Under long-term rice straw retention conditions, the core nosZ-denitrifying phylogroups shifted (r = 0.83, P < 0.001), with the recruitment of keystone taxa from the phyla Bacteroidetes and Euryarchaeota playing a key role in enhancing denitrification activity and stimulating N loss. Accordingly, in a rice-wheat rotation field, the practice of wheat straw retention in a single season is recommended because it will not markedly sacrifice soil N availability impaired by the denitrification process.
期刊介绍:
In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches.
Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.