TDP43 is a newly identified substrate for PS1, enhancing the expression of APP following cleavage.

IF 6.1 2区 生物学 Q1 CELL BIOLOGY
Hanlan Yin, Yuxiang Wang, Zhichao Ren, Zixuan Xiao, Yan Zhang, Yibo Wang, Zining Guo, Lu Chen, Xinlu Bao, Yingshuo Bei, Xueqi Fu, Linlin Zeng
{"title":"TDP43 is a newly identified substrate for PS1, enhancing the expression of APP following cleavage.","authors":"Hanlan Yin, Yuxiang Wang, Zhichao Ren, Zixuan Xiao, Yan Zhang, Yibo Wang, Zining Guo, Lu Chen, Xinlu Bao, Yingshuo Bei, Xueqi Fu, Linlin Zeng","doi":"10.1038/s41420-025-02340-z","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) has been comprehensively studied; however, most research has focused on Aβ plaque deposition and Tau protein phosphorylation. Emerging evidence suggests that TDP43 may be significantly involved AD and potentially worsening its pathology. To investigate the role of TDP43 in the pathological development of AD, we employed the STRING protein network interaction tool to identify potential relationships between TDP43 and other proteins, including PS1 and APP. Subsequent co-immunoprecipitation experiments were conducted, and the results indicated that TDP43 could interact with PS1. Further studies have shown that the interaction between the two would also lead to the loss of nuclear localization of TDP43. We also found that overexpression or knockdown of PS1 in both primary cells, HeLa and NSC34 cells indicated that TDP43 is likely to be a substrate of PS1. Subsequent use of the L685,458 and z-VAD, the PS1 mutant plasmids D257A and D385A, and bioinformatics approaches demonstrated that PS1 is dependent on γ-secretase and caspase activity to cleave TDP43, and that the cleavage site is at amino acid 315 of TDP43. Besides, our study demonstrated that the interaction of TDP43 with PS1 in primary cells, HeLa and NSC34 cells can promote APP expression, resulting in elevated Aβ levels. Finally, we investigated whether the interaction between TDP43 and PS1 affects the expression of other PS1 substrates, Notch and E-cadherin. Our results demonstrated that TDP43 cleaved by PS1 only promoted APP expression and had no effect on other PS1 substrates. In conclusion, these results suggest that TDP43 is a new substrate of PS1 and that TDP43 cleaved by PS1 promotes APP expression, which leads to increased Aβ content, which may explain why TDP43 promotes AD development. These insights enhance our understanding of TDP43's role in AD development.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"76"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-025-02340-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer's disease (AD) has been comprehensively studied; however, most research has focused on Aβ plaque deposition and Tau protein phosphorylation. Emerging evidence suggests that TDP43 may be significantly involved AD and potentially worsening its pathology. To investigate the role of TDP43 in the pathological development of AD, we employed the STRING protein network interaction tool to identify potential relationships between TDP43 and other proteins, including PS1 and APP. Subsequent co-immunoprecipitation experiments were conducted, and the results indicated that TDP43 could interact with PS1. Further studies have shown that the interaction between the two would also lead to the loss of nuclear localization of TDP43. We also found that overexpression or knockdown of PS1 in both primary cells, HeLa and NSC34 cells indicated that TDP43 is likely to be a substrate of PS1. Subsequent use of the L685,458 and z-VAD, the PS1 mutant plasmids D257A and D385A, and bioinformatics approaches demonstrated that PS1 is dependent on γ-secretase and caspase activity to cleave TDP43, and that the cleavage site is at amino acid 315 of TDP43. Besides, our study demonstrated that the interaction of TDP43 with PS1 in primary cells, HeLa and NSC34 cells can promote APP expression, resulting in elevated Aβ levels. Finally, we investigated whether the interaction between TDP43 and PS1 affects the expression of other PS1 substrates, Notch and E-cadherin. Our results demonstrated that TDP43 cleaved by PS1 only promoted APP expression and had no effect on other PS1 substrates. In conclusion, these results suggest that TDP43 is a new substrate of PS1 and that TDP43 cleaved by PS1 promotes APP expression, which leads to increased Aβ content, which may explain why TDP43 promotes AD development. These insights enhance our understanding of TDP43's role in AD development.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Death Discovery
Cell Death Discovery Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
8.30
自引率
1.40%
发文量
468
审稿时长
9 weeks
期刊介绍: Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary. Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信