Single-Cell Liquid-Core Microcapsules for Biomedical Applications.

IF 10 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Manuel Pires-Santos, Mariana Carreira, Bruno P Morais, Francisca G Perfeito, Mariana B Oliveira, Cátia F Monteiro, Sara Nadine, João F Mano
{"title":"Single-Cell Liquid-Core Microcapsules for Biomedical Applications.","authors":"Manuel Pires-Santos, Mariana Carreira, Bruno P Morais, Francisca G Perfeito, Mariana B Oliveira, Cátia F Monteiro, Sara Nadine, João F Mano","doi":"10.1002/adhm.202403808","DOIUrl":null,"url":null,"abstract":"<p><p>More recently, single-cell encapsulation emerged as a promising field in biomedicine due to its potential applications, in cell analysis and therapy. Traditional techniques involve embedding cells in crosslinked polymers to create continuous microgels, suitable mainly for adherent cells, or encapsulating them in droplets for only short-term analysis, due to their instability. In this study, we developed a method for encapsulating single cells in liquid-core microcapsules to address these limitations. The liquid encapsulation system is generated in an all aqueous environment through polymeric electrostatic interactions. Additionally, we design an innovative and low cost sorting system utilizing magnetic nanoparticles (MNPs) to efficiently select single-cell encapsulated units for further analysis and applications. This system is tested with both suspension and adherent cell types, demonstrating cytocompatibility and no abnormal effects on cell behavior. The MNP-based sorting achieved nearly 80% purity of the single-cell population. Overall, this technology provides a highly efficient method for single-cell applications, such as cell screening, by enabling precise short to medium-term analysis, real time monitoring, and high resolution imaging of cellular behavior. Furthermore, the semipermeable membrane unlocks new potential for advancing cell therapy by offering protection for encapsulated cells while ensuring the efficient diffusion of therapeutic factors, paving the way for innovative therapeutic strategies.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2403808"},"PeriodicalIF":10.0000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202403808","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

More recently, single-cell encapsulation emerged as a promising field in biomedicine due to its potential applications, in cell analysis and therapy. Traditional techniques involve embedding cells in crosslinked polymers to create continuous microgels, suitable mainly for adherent cells, or encapsulating them in droplets for only short-term analysis, due to their instability. In this study, we developed a method for encapsulating single cells in liquid-core microcapsules to address these limitations. The liquid encapsulation system is generated in an all aqueous environment through polymeric electrostatic interactions. Additionally, we design an innovative and low cost sorting system utilizing magnetic nanoparticles (MNPs) to efficiently select single-cell encapsulated units for further analysis and applications. This system is tested with both suspension and adherent cell types, demonstrating cytocompatibility and no abnormal effects on cell behavior. The MNP-based sorting achieved nearly 80% purity of the single-cell population. Overall, this technology provides a highly efficient method for single-cell applications, such as cell screening, by enabling precise short to medium-term analysis, real time monitoring, and high resolution imaging of cellular behavior. Furthermore, the semipermeable membrane unlocks new potential for advancing cell therapy by offering protection for encapsulated cells while ensuring the efficient diffusion of therapeutic factors, paving the way for innovative therapeutic strategies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信