Kirill Kamnev, Maria Bendova, Zdenka Fohlerova, Tatiana Fialova, Oleh Martyniuk, Jan Prasek, Kristyna Cihalova and Alexander Mozalev
{"title":"Arrays of ultra-thin selenium-doped zirconium-anodic-oxide nanorods as potential antibacterial coatings†","authors":"Kirill Kamnev, Maria Bendova, Zdenka Fohlerova, Tatiana Fialova, Oleh Martyniuk, Jan Prasek, Kristyna Cihalova and Alexander Mozalev","doi":"10.1039/D4QM01081G","DOIUrl":null,"url":null,"abstract":"<p >Two characteristic types of extraordinarily thin upright-standing ZrO<small><sub>2</sub></small>-based nanorods self-aligned on a substrate, differing in diameters (20/30 nm), lengths (90/120 nm), and population densities (1.1/4.6 × 10<small><sup>10</sup></small> cm<small><sup>−2</sup></small>), were synthesized <em>via</em> the porous-anodic-alumina (PAA)-assisted anodization of Zr in 1.5 M selenic acid followed by selective PAA dissolution. A needle-like shape was achieved due to the unique formation of zirconium anodic oxide in extremely thin nanopores that grow only in selenic acid. The SEM, XPS, and Raman spectroscopy analyses revealed that the nanorods feature a core/shell structure in which the core is stoichiometric amorphous ZrO<small><sub>2</sub></small>, and the shell is ∼6 nm thick hydroxylated zirconium dioxide ZrO<small><sub>2−<em>x</em></sub></small>(OH)<small><sub>2<em>x</em></sub></small> mixed with Al<small><sub>2</sub></small>O<small><sub>3</sub></small>. The core and shell incorporated electrolyte-derived selenate (SeO<small><sub>4</sub></small><small><sup>2−</sup></small>) ions, which replace up to 1% of the O<small><sup>2−</sup></small> ions in the nanorod surface layer. Besides, nanoparticles of elemental Se were deposited on the top of rods during anodic polarization. A model was developed for the cooperative ionic transport and electrochemical and solid-state reactions during the PAA-assisted growth of zirconium oxide in selenic acid. The two Se-doped top-decorated zirconium-oxide nanorod arrays were examined as potential antibacterial nanomaterials toward G-negative <em>E. coli</em> and G-positive <em>S. aureus</em>, using direct SEM observations of the bacteria–surface interfaces and carrying out the modified Japanese Industrial Standard test for antimicrobial activity and efficacy, JIS Z 2801. While specific differences in interaction with each type of bacteria were observed, both nanostructures caused a significant harmful synergetic effect on the bacteria, acting as non-metallic (Se) ion-releasing bactericidal coatings along with repellent and contact-killing activities arising from extraordinary needle-like nanoscale surface engineering.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 5","pages":" 866-883"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/qm/d4qm01081g?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d4qm01081g","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Two characteristic types of extraordinarily thin upright-standing ZrO2-based nanorods self-aligned on a substrate, differing in diameters (20/30 nm), lengths (90/120 nm), and population densities (1.1/4.6 × 1010 cm−2), were synthesized via the porous-anodic-alumina (PAA)-assisted anodization of Zr in 1.5 M selenic acid followed by selective PAA dissolution. A needle-like shape was achieved due to the unique formation of zirconium anodic oxide in extremely thin nanopores that grow only in selenic acid. The SEM, XPS, and Raman spectroscopy analyses revealed that the nanorods feature a core/shell structure in which the core is stoichiometric amorphous ZrO2, and the shell is ∼6 nm thick hydroxylated zirconium dioxide ZrO2−x(OH)2x mixed with Al2O3. The core and shell incorporated electrolyte-derived selenate (SeO42−) ions, which replace up to 1% of the O2− ions in the nanorod surface layer. Besides, nanoparticles of elemental Se were deposited on the top of rods during anodic polarization. A model was developed for the cooperative ionic transport and electrochemical and solid-state reactions during the PAA-assisted growth of zirconium oxide in selenic acid. The two Se-doped top-decorated zirconium-oxide nanorod arrays were examined as potential antibacterial nanomaterials toward G-negative E. coli and G-positive S. aureus, using direct SEM observations of the bacteria–surface interfaces and carrying out the modified Japanese Industrial Standard test for antimicrobial activity and efficacy, JIS Z 2801. While specific differences in interaction with each type of bacteria were observed, both nanostructures caused a significant harmful synergetic effect on the bacteria, acting as non-metallic (Se) ion-releasing bactericidal coatings along with repellent and contact-killing activities arising from extraordinary needle-like nanoscale surface engineering.
期刊介绍:
Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome.
This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.