Bei Wang , Tao Wei , Jianghao Li , Dongwei Li , Lanzhi Zhang , Yangjian Cai , Zuoqiang Hao
{"title":"Acoustic measurement of the critical power for self-focusing of femtosecond lasers in air","authors":"Bei Wang , Tao Wei , Jianghao Li , Dongwei Li , Lanzhi Zhang , Yangjian Cai , Zuoqiang Hao","doi":"10.1016/j.optlastec.2025.112670","DOIUrl":null,"url":null,"abstract":"<div><div>Femtosecond laser filamentation, characterized by unique nonlinear optical phenomena, has a wide range of applications, including air lasing, air waveguides, and free-space optical communication. The critical power for self-focusing is a key parameter in this process; however, existing measurement methods are often limited by factors such as versatility and practicality. In this study, we introduce a newly developed acoustic technique using a cell phone to determine the critical power for self-focusing of femtosecond Gaussian and vortex beams in air. By analyzing the peak intensity<!--> <!-->and spatial integral of acoustic signals along the laser propagation path<!--> <!-->as a function of incident laser energy, we successfully measured<!--> <!-->the critical powers for self-focusing of both laser beam types. The technique offers several advantages, including simplicity, cost-effectiveness, high sensitivity, immunity to background light, and robustness in noisy environments. Our results suggest<!--> <!-->that acoustic diagnostics can be a viable alternative to traditional optical methods for studying laser filamentation, particularly in challenging environments.</div></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"186 ","pages":"Article 112670"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399225002580","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Femtosecond laser filamentation, characterized by unique nonlinear optical phenomena, has a wide range of applications, including air lasing, air waveguides, and free-space optical communication. The critical power for self-focusing is a key parameter in this process; however, existing measurement methods are often limited by factors such as versatility and practicality. In this study, we introduce a newly developed acoustic technique using a cell phone to determine the critical power for self-focusing of femtosecond Gaussian and vortex beams in air. By analyzing the peak intensity and spatial integral of acoustic signals along the laser propagation path as a function of incident laser energy, we successfully measured the critical powers for self-focusing of both laser beam types. The technique offers several advantages, including simplicity, cost-effectiveness, high sensitivity, immunity to background light, and robustness in noisy environments. Our results suggest that acoustic diagnostics can be a viable alternative to traditional optical methods for studying laser filamentation, particularly in challenging environments.
期刊介绍:
Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication.
The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas:
•development in all types of lasers
•developments in optoelectronic devices and photonics
•developments in new photonics and optical concepts
•developments in conventional optics, optical instruments and components
•techniques of optical metrology, including interferometry and optical fibre sensors
•LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow
•applications of lasers to materials processing, optical NDT display (including holography) and optical communication
•research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume)
•developments in optical computing and optical information processing
•developments in new optical materials
•developments in new optical characterization methods and techniques
•developments in quantum optics
•developments in light assisted micro and nanofabrication methods and techniques
•developments in nanophotonics and biophotonics
•developments in imaging processing and systems