Water quality improves with increased spatially surface hydrological connectivity in plain river network areas

IF 8 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Su Yang , Guishan Yang , Bing Li , Rongrong Wan
{"title":"Water quality improves with increased spatially surface hydrological connectivity in plain river network areas","authors":"Su Yang ,&nbsp;Guishan Yang ,&nbsp;Bing Li ,&nbsp;Rongrong Wan","doi":"10.1016/j.jenvman.2025.124703","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrological connectivity remarkably affects the water quality of river–lake systems, particularly in densely urbanized plain river network areas, where its impact remains unclear. The growing urbanization and rapid changes in hydrological networks make it more challenging to manage water quality effectively. Understanding how hydrological connectivity changes and the influence on key water quality variables is crucial for improving management strategies. We quantified hydrological connectivity between lakes in the northern Taihu Lake Basin using a connectivity topological model based on graph theory and landscape ecology. XG-Boost models were developed to elucidate the potential threshold effect of hydrological connectivity on key water quality parameters. These models were accompanied by linear mixed-effect (LME) models, which included land use types as a random effect to evaluate the response relationship between hydrological connectivity and water quality. Results indicated that the spatiotemporal dynamics of hydrological connectivity decreased over the last 20 years. Furthermore, changes in hydrological connectivity considerably influenced environmental variables in river–lake network areas. The XG-Boost models identified a P<sub>ij</sub> value of 0.02 as a potential threshold, at which spatial hydrological connectivity begins to impact water quality as concentrations change steadily above this threshold. The LME models confirmed that enhanced spatial hydrological connectivity was generally associated with reduced concentrations of TN, TP, NH<sub>3</sub>-N, and COD<sub>Mn</sub>, and increased DO levels. In addition, hydrological connectivity was influenced by factors such as the shortest river path between lakes and hydraulic facilities along the path. This finding suggests that hydrological connectivity can be restored to improve water quality by refining river network topology, optimizing existing sluice schedules, or removing unnecessary dikes. These results highlight the potential of hydrological connectivity optimization to support water quality improvement strategies in complex urban river networks.</div></div>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"377 ","pages":"Article 124703"},"PeriodicalIF":8.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301479725006796","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrological connectivity remarkably affects the water quality of river–lake systems, particularly in densely urbanized plain river network areas, where its impact remains unclear. The growing urbanization and rapid changes in hydrological networks make it more challenging to manage water quality effectively. Understanding how hydrological connectivity changes and the influence on key water quality variables is crucial for improving management strategies. We quantified hydrological connectivity between lakes in the northern Taihu Lake Basin using a connectivity topological model based on graph theory and landscape ecology. XG-Boost models were developed to elucidate the potential threshold effect of hydrological connectivity on key water quality parameters. These models were accompanied by linear mixed-effect (LME) models, which included land use types as a random effect to evaluate the response relationship between hydrological connectivity and water quality. Results indicated that the spatiotemporal dynamics of hydrological connectivity decreased over the last 20 years. Furthermore, changes in hydrological connectivity considerably influenced environmental variables in river–lake network areas. The XG-Boost models identified a Pij value of 0.02 as a potential threshold, at which spatial hydrological connectivity begins to impact water quality as concentrations change steadily above this threshold. The LME models confirmed that enhanced spatial hydrological connectivity was generally associated with reduced concentrations of TN, TP, NH3-N, and CODMn, and increased DO levels. In addition, hydrological connectivity was influenced by factors such as the shortest river path between lakes and hydraulic facilities along the path. This finding suggests that hydrological connectivity can be restored to improve water quality by refining river network topology, optimizing existing sluice schedules, or removing unnecessary dikes. These results highlight the potential of hydrological connectivity optimization to support water quality improvement strategies in complex urban river networks.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Environmental Management
Journal of Environmental Management 环境科学-环境科学
CiteScore
13.70
自引率
5.70%
发文量
2477
审稿时长
84 days
期刊介绍: The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信