{"title":"Learning-assisted improvements in Adaptive Variable Neighborhood Search","authors":"Panagiotis Karakostas, Angelo Sifaleras","doi":"10.1016/j.swevo.2025.101887","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents the design and integration of novel adaptive components within the Double-Adaptive General Variable Neighborhood Search (DA-GVNS) algorithm, aimed at improving its overall efficiency. These adaptations utilize iteration-based data to refine the search process, with enhancements such as an adaptive reordering mechanism in the refinement phase and a knowledge-guided approach to adjust the search strategy. Additionally, an adaptive mechanism for dynamically controlling the shaking intensity was introduced. The proposed knowledge-guided adaptations demonstrated superior performance over the original DA-GVNS framework, with the most effective scheme selected for further evaluation. Initially, the symmetric Traveling Salesman Problem (TSP) was used as a benchmark to quantify the impact of these mechanisms, showing significant improvements through rigorous statistical analysis. A comparative study was then conducted against six advanced heuristics from the literature. Finally, the most promising knowledge-guided GVNS (KG-GVNS) was tested against the original DA-GVNS on selected instances of the Quadratic Assignment Problem (QAP), where detailed statistical analysis highlighted its competitive advantage and robustness in addressing complex combinatorial optimization problems.</div></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"94 ","pages":"Article 101887"},"PeriodicalIF":8.2000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650225000458","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents the design and integration of novel adaptive components within the Double-Adaptive General Variable Neighborhood Search (DA-GVNS) algorithm, aimed at improving its overall efficiency. These adaptations utilize iteration-based data to refine the search process, with enhancements such as an adaptive reordering mechanism in the refinement phase and a knowledge-guided approach to adjust the search strategy. Additionally, an adaptive mechanism for dynamically controlling the shaking intensity was introduced. The proposed knowledge-guided adaptations demonstrated superior performance over the original DA-GVNS framework, with the most effective scheme selected for further evaluation. Initially, the symmetric Traveling Salesman Problem (TSP) was used as a benchmark to quantify the impact of these mechanisms, showing significant improvements through rigorous statistical analysis. A comparative study was then conducted against six advanced heuristics from the literature. Finally, the most promising knowledge-guided GVNS (KG-GVNS) was tested against the original DA-GVNS on selected instances of the Quadratic Assignment Problem (QAP), where detailed statistical analysis highlighted its competitive advantage and robustness in addressing complex combinatorial optimization problems.
期刊介绍:
Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.