Effect of fabrication techniques of high entropy alloys: A review with integration of machine learning

IF 6 Q1 ENGINEERING, MULTIDISCIPLINARY
Mohamed Yasin Abdul Salam , Enoch Nifise Ogunmuyiwa , Victor Kitso Manisa , Abid Yahya , Irfan Anjum Badruddin
{"title":"Effect of fabrication techniques of high entropy alloys: A review with integration of machine learning","authors":"Mohamed Yasin Abdul Salam ,&nbsp;Enoch Nifise Ogunmuyiwa ,&nbsp;Victor Kitso Manisa ,&nbsp;Abid Yahya ,&nbsp;Irfan Anjum Badruddin","doi":"10.1016/j.rineng.2025.104441","DOIUrl":null,"url":null,"abstract":"<div><div>High Entropy Alloys (HEAs) are an emerging class of materials distinguished by equimolar or near-equimolar compositions of five or more principal elements. HEAs display exceptional mechanical properties, thermal stability, and wear resistance, making them suitable for advanced aerospace, biomedical, and automotive engineering applications. This review thoroughly explores various fabrication techniques for HEAs, including Vacuum Arc Melting (VAM), Hot Compression (HC), Laser Cladding (LC), and Spark Plasma Sintering (SPS). Each method's advantages, limitations, and impacts on microstructural properties are discussed in detail. Additionally, the integration of Machine Learning (ML) techniques in HEA research is highlighted, demonstrating their potential for optimizing fabrication parameters and predicting phase stability, microstructure evolution, and mechanical properties. The review concludes by identifying challenges in HEA fabrication, such as data availability and sustainability, and proposes future research directions to address these gaps. This work aims to provide researchers and engineers with a consolidated resource for advancing the development and application of HEAs.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"25 ","pages":"Article 104441"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123025005195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High Entropy Alloys (HEAs) are an emerging class of materials distinguished by equimolar or near-equimolar compositions of five or more principal elements. HEAs display exceptional mechanical properties, thermal stability, and wear resistance, making them suitable for advanced aerospace, biomedical, and automotive engineering applications. This review thoroughly explores various fabrication techniques for HEAs, including Vacuum Arc Melting (VAM), Hot Compression (HC), Laser Cladding (LC), and Spark Plasma Sintering (SPS). Each method's advantages, limitations, and impacts on microstructural properties are discussed in detail. Additionally, the integration of Machine Learning (ML) techniques in HEA research is highlighted, demonstrating their potential for optimizing fabrication parameters and predicting phase stability, microstructure evolution, and mechanical properties. The review concludes by identifying challenges in HEA fabrication, such as data availability and sustainability, and proposes future research directions to address these gaps. This work aims to provide researchers and engineers with a consolidated resource for advancing the development and application of HEAs.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Engineering
Results in Engineering Engineering-Engineering (all)
CiteScore
5.80
自引率
34.00%
发文量
441
审稿时长
47 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信