CYFIP1 coordinate with RNMT to induce osteosarcoma cuproptosis via AURKAIP1 m7G modification.

IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Zili Lin, Ziyi Wu, Yizhe He, Xiangyao Li, Wei Luo
{"title":"CYFIP1 coordinate with RNMT to induce osteosarcoma cuproptosis via AURKAIP1 m7G modification.","authors":"Zili Lin, Ziyi Wu, Yizhe He, Xiangyao Li, Wei Luo","doi":"10.1186/s10020-025-01127-3","DOIUrl":null,"url":null,"abstract":"<p><p>Osteosarcoma (OS) presents challenges due to its genomic instability and complexity, necessitating investigation into its oncogenesis and progression mechanisms. Recent studies have implicated m7G, a post-transcriptional modification, in the development of various cancers. However, research on m7G modification in OS remains limited. This study aimed to explore the impact of m7G modification in OS, focusing on the role and mechanism of CYFIP1, a member of m7G cap binding complexes. Our findings demonstrated prominent anti-OS effects of CYFIP1 in vitro and vivo. Mechanistically, CYFIP1 collaborated with RNMT to induce the m7G methylation of AURKAIP1 mRNA, which resulted in the stability and the increasing translation of AURKAIP1 mRNA. AURKAIP1, a kind of mitochondrial small ribosomal subunit protein, exhibited increased expression, leading to the dysregulation of mitochondrial translation. This, in turn, caused an increase in the expression of FDX1, eventually triggering cuproptosis in OS cells and repressing OS occurrence and progression. In summary, our study identified the CYFIP1/RNMT/AURKAIP1/FDX1 axis as a potential therapeutic target for OS. These insights contribute to OS research and may guide the development of novel treatments for this challenging disease.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"31 1","pages":"74"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846196/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10020-025-01127-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Osteosarcoma (OS) presents challenges due to its genomic instability and complexity, necessitating investigation into its oncogenesis and progression mechanisms. Recent studies have implicated m7G, a post-transcriptional modification, in the development of various cancers. However, research on m7G modification in OS remains limited. This study aimed to explore the impact of m7G modification in OS, focusing on the role and mechanism of CYFIP1, a member of m7G cap binding complexes. Our findings demonstrated prominent anti-OS effects of CYFIP1 in vitro and vivo. Mechanistically, CYFIP1 collaborated with RNMT to induce the m7G methylation of AURKAIP1 mRNA, which resulted in the stability and the increasing translation of AURKAIP1 mRNA. AURKAIP1, a kind of mitochondrial small ribosomal subunit protein, exhibited increased expression, leading to the dysregulation of mitochondrial translation. This, in turn, caused an increase in the expression of FDX1, eventually triggering cuproptosis in OS cells and repressing OS occurrence and progression. In summary, our study identified the CYFIP1/RNMT/AURKAIP1/FDX1 axis as a potential therapeutic target for OS. These insights contribute to OS research and may guide the development of novel treatments for this challenging disease.

CYFIP1 与 RNMT 相互配合,通过 AURKAIP1 m7G 修饰诱导骨肉瘤杯突。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Medicine
Molecular Medicine 医学-生化与分子生物学
CiteScore
8.60
自引率
0.00%
发文量
137
审稿时长
1 months
期刊介绍: Molecular Medicine is an open access journal that focuses on publishing recent findings related to disease pathogenesis at the molecular or physiological level. These insights can potentially contribute to the development of specific tools for disease diagnosis, treatment, or prevention. The journal considers manuscripts that present material pertinent to the genetic, molecular, or cellular underpinnings of critical physiological or disease processes. Submissions to Molecular Medicine are expected to elucidate the broader implications of the research findings for human disease and medicine in a manner that is accessible to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信