{"title":"Hypoxia-mediated SUMOylation of FADD exacerbates endothelial cell injury via the RIPK1-RIPK3-MLKL signaling axis.","authors":"Liming Yang, Yilin Wen, Zhiyi Yuan, Dezhang Zhao, Ping Weng, Yueyue Li, Qingyang Chen, Wanping Zhang, Hui Hu, Chao Yu","doi":"10.1038/s41419-025-07441-2","DOIUrl":null,"url":null,"abstract":"<p><p>Vascular endothelial cells are the predominant cell type in the cardiovascular system, and their dysfunction and death following hypoxic injury contribute to vascular lesions, playing an essential role in cardiovascular disease. Despite its importance, the mechanisms underlying vascular endothelial cell injury under hypoxia and potential therapeutic interventions remain poorly understood. Here, we constructed both an in vivo hypoxia model in C57BL/6 mice and an in vitro hypoxia model in HUVEC cells. Our findings demonstrated that hypoxia induces necroptosis in vascular endothelial cells and exacerbates inflammatory injury in vivo and in vitro, as evidenced by immunofluorescence and western blot. We identified FADD as a critical regulator of hypoxia-mediated necroptosis, with FADD knockdown significantly reversing hypoxia-induced necroptosis. Mechanistically, hypoxia affected protein conformation through SUMOylation of FADD and competitively inhibited its ubiquitination, leading to an increase in protein half-life and protein level of FADD. Furthermore, SUMOylation increased the interaction between FADD and RIPK1 and induced the formation of the FADD-RIPK1-RIPK3 complex, thereby promoting necroptosis in vascular endothelial cells. The SUMOylation inhibitor ginkgolic acid (GA) notably reduced hypoxia-induced vascular endothelial injury and inflammatory responses in male mice. Taken together, our research has uncovered a new process by which SUMOylation of FADD regulates hypoxia-induced necroptosis in endothelial cells, providing potential therapeutic targets for hypoxia-related cardiovascular diseases.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"16 1","pages":"121"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11845712/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-025-07441-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Vascular endothelial cells are the predominant cell type in the cardiovascular system, and their dysfunction and death following hypoxic injury contribute to vascular lesions, playing an essential role in cardiovascular disease. Despite its importance, the mechanisms underlying vascular endothelial cell injury under hypoxia and potential therapeutic interventions remain poorly understood. Here, we constructed both an in vivo hypoxia model in C57BL/6 mice and an in vitro hypoxia model in HUVEC cells. Our findings demonstrated that hypoxia induces necroptosis in vascular endothelial cells and exacerbates inflammatory injury in vivo and in vitro, as evidenced by immunofluorescence and western blot. We identified FADD as a critical regulator of hypoxia-mediated necroptosis, with FADD knockdown significantly reversing hypoxia-induced necroptosis. Mechanistically, hypoxia affected protein conformation through SUMOylation of FADD and competitively inhibited its ubiquitination, leading to an increase in protein half-life and protein level of FADD. Furthermore, SUMOylation increased the interaction between FADD and RIPK1 and induced the formation of the FADD-RIPK1-RIPK3 complex, thereby promoting necroptosis in vascular endothelial cells. The SUMOylation inhibitor ginkgolic acid (GA) notably reduced hypoxia-induced vascular endothelial injury and inflammatory responses in male mice. Taken together, our research has uncovered a new process by which SUMOylation of FADD regulates hypoxia-induced necroptosis in endothelial cells, providing potential therapeutic targets for hypoxia-related cardiovascular diseases.
期刊介绍:
Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism.
Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following:
Experimental medicine
Cancer
Immunity
Internal medicine
Neuroscience
Cancer metabolism