Cross sections and inelasticity distributions of high-energy neutrino deep inelastic scattering

IF 5 2区 物理与天体物理 Q1 Physics and Astronomy
Philip L. R. Weigel, Janet M. Conrad, Alfonso Garcia-Soto
{"title":"Cross sections and inelasticity distributions of high-energy neutrino deep inelastic scattering","authors":"Philip L. R. Weigel, Janet M. Conrad, Alfonso Garcia-Soto","doi":"10.1103/physrevd.111.043044","DOIUrl":null,"url":null,"abstract":"This study presents a comprehensive model for neutrino deep inelastic scattering (DIS) cross sections spanning energies from 50 to 5</a:mn>×</a:mo>10</a:mn></a:mrow>12</a:mn></a:mrow></a:msup></a:mtext></a:mtext>GeV</a:mi></a:mrow></a:math> with an emphasis on applications to neutrino telescopes. We provide calculations of the total charged-current DIS cross sections and inelasticity distributions up to next-to-next-to-leading order for isoscalar nucleon targets and up to next-to-leading order for nuclear targets. Several modifications to the structure functions are applied to improve the modeling of the cross sections at low energies where perturbative QCD is less accurate and at energies above <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:msup><c:mn>10</c:mn><c:mn>4</c:mn></c:msup><c:mtext> </c:mtext><c:mtext> </c:mtext><c:mi>GeV</c:mi></c:math> where there is non-negligible top quark production and small-<e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mi>x</e:mi></e:math> logarithms need to be resummed. Using the Fixed-order next-to-leading logarithm (FONLL) general-mass variable-flavor number scheme, we account for heavy quark mass effects and separate the heavy flavor components of the structure functions, obtaining predictions of their relative contributions to the cross sections and the uncertainties arising from the parton distribution functions. Additionally, the effects of final state radiation are implemented in the calculation of the double-differential cross section and discussed in terms of their impact on measurements at neutrino telescopes. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"89 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.043044","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a comprehensive model for neutrino deep inelastic scattering (DIS) cross sections spanning energies from 50 to 5×1012GeV with an emphasis on applications to neutrino telescopes. We provide calculations of the total charged-current DIS cross sections and inelasticity distributions up to next-to-next-to-leading order for isoscalar nucleon targets and up to next-to-leading order for nuclear targets. Several modifications to the structure functions are applied to improve the modeling of the cross sections at low energies where perturbative QCD is less accurate and at energies above 104 GeV where there is non-negligible top quark production and small-x logarithms need to be resummed. Using the Fixed-order next-to-leading logarithm (FONLL) general-mass variable-flavor number scheme, we account for heavy quark mass effects and separate the heavy flavor components of the structure functions, obtaining predictions of their relative contributions to the cross sections and the uncertainties arising from the parton distribution functions. Additionally, the effects of final state radiation are implemented in the calculation of the double-differential cross section and discussed in terms of their impact on measurements at neutrino telescopes. Published by the American Physical Society 2025
高能中微子深度非弹性散射的截面和非弹性分布
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信