3D joint T1/T1 ρ/T2 mapping and water-fat imaging for contrast-agent free myocardial tissue characterization at 1.5T.

IF 3 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Michael G Crabb, Karl P Kunze, Simon J Littlewood, Donovan Tripp, Anastasia Fotaki, Claudia Prieto, René M Botnar
{"title":"3D joint T<sub>1</sub>/T<sub>1</sub> <sub>ρ</sub>/T<sub>2</sub> mapping and water-fat imaging for contrast-agent free myocardial tissue characterization at 1.5T.","authors":"Michael G Crabb, Karl P Kunze, Simon J Littlewood, Donovan Tripp, Anastasia Fotaki, Claudia Prieto, René M Botnar","doi":"10.1002/mrm.30397","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To develop a novel, free-breathing, 3D joint <math> <semantics> <mrow> <msub><mrow><mi>T</mi></mrow> <mrow><mn>1</mn></mrow> </msub> </mrow> <annotation>$$ {T}_1 $$</annotation></semantics> </math> / <math> <semantics> <mrow> <msub><mrow><mi>T</mi></mrow> <mrow><mn>1</mn> <mi>ρ</mi></mrow> </msub> </mrow> <annotation>$$ {T}_{1\\rho } $$</annotation></semantics> </math> / <math> <semantics> <mrow> <msub><mrow><mi>T</mi></mrow> <mrow><mn>2</mn></mrow> </msub> </mrow> <annotation>$$ {T}_2 $$</annotation></semantics> </math> mapping sequence with Dixon encoding to provide co-registered 3D <math> <semantics> <mrow> <msub><mrow><mi>T</mi></mrow> <mrow><mn>1</mn></mrow> </msub> </mrow> <annotation>$$ {T}_1 $$</annotation></semantics> </math> , <math> <semantics> <mrow> <msub><mrow><mi>T</mi></mrow> <mrow><mn>1</mn> <mi>ρ</mi></mrow> </msub> </mrow> <annotation>$$ {T}_{1\\rho } $$</annotation></semantics> </math> , and <math> <semantics> <mrow> <msub><mrow><mi>T</mi></mrow> <mrow><mn>2</mn></mrow> </msub> </mrow> <annotation>$$ {T}_2 $$</annotation></semantics> </math> maps and water-fat volumes with isotropic spatial resolution in a single <math> <semantics><mrow><mo>≈</mo> <mn>7</mn></mrow> <annotation>$$ \\approx 7 $$</annotation></semantics> </math> min scan for comprehensive contrast-agent-free myocardial tissue characterization and simultaneous evaluation of the whole-heart anatomy.</p><p><strong>Methods: </strong>An interleaving sequence over 5 heartbeats is proposed to provide <math> <semantics> <mrow> <msub><mrow><mi>T</mi></mrow> <mrow><mn>1</mn></mrow> </msub> </mrow> <annotation>$$ {T}_1 $$</annotation></semantics> </math> , <math> <semantics> <mrow> <msub><mrow><mi>T</mi></mrow> <mrow><mn>1</mn> <mi>ρ</mi></mrow> </msub> </mrow> <annotation>$$ {T}_{1\\rho } $$</annotation></semantics> </math> , and <math> <semantics> <mrow> <msub><mrow><mi>T</mi></mrow> <mrow><mn>2</mn></mrow> </msub> </mrow> <annotation>$$ {T}_2 $$</annotation></semantics> </math> encoding, with 3D data acquired with Dixon gradient-echo readout and 2D image navigators to enable <math> <semantics><mrow><mn>100</mn> <mo>%</mo></mrow> <annotation>$$ 100\\% $$</annotation></semantics> </math> respiratory scan efficiency. Images were reconstructed with a non-rigid motion-corrected, low-rank patch-based reconstruction, and maps were generated through dictionary matching. The proposed sequence was compared against conventional 2D techniques in phantoms, 10 healthy subjects, and 1 patient.</p><p><strong>Results: </strong>The proposed 3D <math> <semantics> <mrow> <msub><mrow><mi>T</mi></mrow> <mrow><mn>1</mn></mrow> </msub> </mrow> <annotation>$$ {T}_1 $$</annotation></semantics> </math> , <math> <semantics> <mrow> <msub><mrow><mi>T</mi></mrow> <mrow><mn>1</mn> <mi>ρ</mi></mrow> </msub> </mrow> <annotation>$$ {T}_{1\\rho } $$</annotation></semantics> </math> , and <math> <semantics> <mrow> <msub><mrow><mi>T</mi></mrow> <mrow><mn>2</mn></mrow> </msub> </mrow> <annotation>$$ {T}_2 $$</annotation></semantics> </math> measurements showed excellent correlation with 2D reference measurements in phantoms. For healthy subjects, the mapping values of septal myocardial tissue were <math> <semantics> <mrow><msub><mi>T</mi> <mn>1</mn></msub> <mo>=</mo> <mn>1060</mn> <mo>±</mo> <mn>48</mn> <mspace></mspace> <mtext>ms</mtext></mrow> <annotation>$$ {T}_1=1060\\pm 48\\kern0.2778em \\mathrm{ms} $$</annotation></semantics> </math> , <math> <semantics> <mrow><msub><mi>T</mi> <mrow><mn>1</mn> <mi>ρ</mi></mrow> </msub> <mo>=</mo> <mn>48</mn> <mo>.</mo> <mn>1</mn> <mo>±</mo> <mn>3</mn> <mo>.</mo> <mn>9</mn> <mspace></mspace> <mtext>ms</mtext></mrow> <annotation>$$ {T}_{1\\rho }=48.1\\pm 3.9\\kern0.2778em \\mathrm{ms} $$</annotation></semantics> </math> , and <math> <semantics> <mrow><msub><mi>T</mi> <mn>2</mn></msub> <mo>=</mo> <mn>44</mn> <mo>.</mo> <mn>2</mn> <mo>±</mo> <mn>3</mn> <mo>.</mo> <mn>2</mn> <mspace></mspace> <mtext>ms</mtext></mrow> <annotation>$$ {T}_2=44.2\\pm 3.2\\kern0.2778em \\mathrm{ms} $$</annotation></semantics> </math> for the proposed sequence, against <math> <semantics> <mrow><msub><mi>T</mi> <mn>1</mn></msub> <mo>=</mo> <mn>959</mn> <mo>±</mo> <mn>15</mn> <mspace></mspace> <mtext>ms</mtext></mrow> <annotation>$$ {T}_1=959\\pm 15\\kern0.2778em \\mathrm{ms} $$</annotation></semantics> </math> , <math> <semantics> <mrow><msub><mi>T</mi> <mrow><mn>1</mn> <mi>ρ</mi></mrow> </msub> <mo>=</mo> <mn>56</mn> <mo>.</mo> <mn>4</mn> <mo>±</mo> <mn>1</mn> <mo>.</mo> <mn>9</mn> <mspace></mspace> <mtext>ms</mtext></mrow> <annotation>$$ {T}_{1\\rho }=56.4\\pm 1.9\\kern0.2778em \\mathrm{ms} $$</annotation></semantics> </math> , and <math> <semantics> <mrow><msub><mi>T</mi> <mn>2</mn></msub> <mo>=</mo> <mn>47</mn> <mo>.</mo> <mn>3</mn> <mo>±</mo> <mn>1</mn> <mo>.</mo> <mn>5</mn> <mspace></mspace> <mtext>ms</mtext></mrow> <annotation>$$ {T}_2=47.3\\pm 1.5\\kern0.2778em \\mathrm{ms} $$</annotation></semantics> </math> for 2D MOLLI, 2D <math> <semantics> <mrow> <msub><mrow><mi>T</mi></mrow> <mrow><mn>1</mn> <mi>ρ</mi></mrow> </msub> </mrow> <annotation>$$ {T}_{1\\rho } $$</annotation></semantics> </math> -prep bSSFP and 2D <math> <semantics> <mrow> <msub><mrow><mi>T</mi></mrow> <mrow><mn>2</mn></mrow> </msub> </mrow> <annotation>$$ {T}_2 $$</annotation></semantics> </math> -prep bSSFP, respectively. Promising results were obtained when comparing the proposed mapping to 2D references in 1 patient with active myocarditis.</p><p><strong>Conclusion: </strong>The proposed approach enables simultaneous 3D whole-heart joint <math> <semantics> <mrow> <msub><mrow><mi>T</mi></mrow> <mrow><mn>1</mn></mrow> </msub> </mrow> <annotation>$$ {T}_1 $$</annotation></semantics> </math> / <math> <semantics> <mrow> <msub><mrow><mi>T</mi></mrow> <mrow><mn>1</mn> <mi>ρ</mi></mrow> </msub> </mrow> <annotation>$$ {T}_{1\\rho } $$</annotation></semantics> </math> / <math> <semantics> <mrow> <msub><mrow><mi>T</mi></mrow> <mrow><mn>2</mn></mrow> </msub> </mrow> <annotation>$$ {T}_2 $$</annotation></semantics> </math> mapping and water/fat imaging in <math> <semantics><mrow><mo>≈</mo></mrow> <annotation>$$ \\approx $$</annotation></semantics> </math> 7 min scan time, demonstrating good agreement with conventional mapping techniques in phantoms and healthy subjects and promising results in 1 patient with suspected cardiovascular disease.</p>","PeriodicalId":18065,"journal":{"name":"Magnetic Resonance in Medicine","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mrm.30397","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: To develop a novel, free-breathing, 3D joint T 1 $$ {T}_1 $$ / T 1 ρ $$ {T}_{1\rho } $$ / T 2 $$ {T}_2 $$ mapping sequence with Dixon encoding to provide co-registered 3D T 1 $$ {T}_1 $$ , T 1 ρ $$ {T}_{1\rho } $$ , and T 2 $$ {T}_2 $$ maps and water-fat volumes with isotropic spatial resolution in a single 7 $$ \approx 7 $$ min scan for comprehensive contrast-agent-free myocardial tissue characterization and simultaneous evaluation of the whole-heart anatomy.

Methods: An interleaving sequence over 5 heartbeats is proposed to provide T 1 $$ {T}_1 $$ , T 1 ρ $$ {T}_{1\rho } $$ , and T 2 $$ {T}_2 $$ encoding, with 3D data acquired with Dixon gradient-echo readout and 2D image navigators to enable 100 % $$ 100\% $$ respiratory scan efficiency. Images were reconstructed with a non-rigid motion-corrected, low-rank patch-based reconstruction, and maps were generated through dictionary matching. The proposed sequence was compared against conventional 2D techniques in phantoms, 10 healthy subjects, and 1 patient.

Results: The proposed 3D T 1 $$ {T}_1 $$ , T 1 ρ $$ {T}_{1\rho } $$ , and T 2 $$ {T}_2 $$ measurements showed excellent correlation with 2D reference measurements in phantoms. For healthy subjects, the mapping values of septal myocardial tissue were T 1 = 1060 ± 48 ms $$ {T}_1=1060\pm 48\kern0.2778em \mathrm{ms} $$ , T 1 ρ = 48 . 1 ± 3 . 9 ms $$ {T}_{1\rho }=48.1\pm 3.9\kern0.2778em \mathrm{ms} $$ , and T 2 = 44 . 2 ± 3 . 2 ms $$ {T}_2=44.2\pm 3.2\kern0.2778em \mathrm{ms} $$ for the proposed sequence, against T 1 = 959 ± 15 ms $$ {T}_1=959\pm 15\kern0.2778em \mathrm{ms} $$ , T 1 ρ = 56 . 4 ± 1 . 9 ms $$ {T}_{1\rho }=56.4\pm 1.9\kern0.2778em \mathrm{ms} $$ , and T 2 = 47 . 3 ± 1 . 5 ms $$ {T}_2=47.3\pm 1.5\kern0.2778em \mathrm{ms} $$ for 2D MOLLI, 2D T 1 ρ $$ {T}_{1\rho } $$ -prep bSSFP and 2D T 2 $$ {T}_2 $$ -prep bSSFP, respectively. Promising results were obtained when comparing the proposed mapping to 2D references in 1 patient with active myocarditis.

Conclusion: The proposed approach enables simultaneous 3D whole-heart joint T 1 $$ {T}_1 $$ / T 1 ρ $$ {T}_{1\rho } $$ / T 2 $$ {T}_2 $$ mapping and water/fat imaging in $$ \approx $$ 7 min scan time, demonstrating good agreement with conventional mapping techniques in phantoms and healthy subjects and promising results in 1 patient with suspected cardiovascular disease.

在 1.5T 下进行三维联合 T1/T1 ρ/T2 映像分析和水脂成像,以确定无造影剂心肌组织的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
24.20%
发文量
376
审稿时长
2-4 weeks
期刊介绍: Magnetic Resonance in Medicine (Magn Reson Med) is an international journal devoted to the publication of original investigations concerned with all aspects of the development and use of nuclear magnetic resonance and electron paramagnetic resonance techniques for medical applications. Reports of original investigations in the areas of mathematics, computing, engineering, physics, biophysics, chemistry, biochemistry, and physiology directly relevant to magnetic resonance will be accepted, as well as methodology-oriented clinical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信