Christopher Ashwood, Cecilia Voelcker, Richard D Cummings
{"title":"Swift Universal Glycan Acquisition (SUGA) Enables Quantitative Glycan Profiling across Diverse Sample Types.","authors":"Christopher Ashwood, Cecilia Voelcker, Richard D Cummings","doi":"10.1021/acs.jproteome.4c00657","DOIUrl":null,"url":null,"abstract":"<p><p>The ability to rapidly analyze complex mixtures of glycans derived from glycoproteins is important, but techniques are often laborious and require multiple glycan derivatization steps. Here, we describe an approach termed Swift Universal Glycan Acquisition (SUGA) in which the total released, nonreduced <i>N</i>-glycan samples are analyzed following direct injection and electrospray ionization in a mass spectrometer with a rapid 3 min run time for each sample. As electrospray ionization (ESI) can generate multiple charge states and adducts for the same glycan composition (MS1), deconvolution is performed to yield the relative intensity profile for each detected glycan composition; each annotated composition is supported by an annotated MS2 spectrum. This combination of MS1 and MS2 data enables confident glycan identification. The data obtained by SUGA are comparable to those obtained using permethylated <i>N</i>-glycans analyzed by matrix-assisted laser desorption/ionization (MALDI)-MS. The SUGA approach was applied to the analyses of several purified glycoproteins and <i>N</i>-glycans derived from cells and compared to spectra obtained following permethylation and analysis by MALDI-MS. This new approach will facilitate the rapid and high-throughput analysis of <i>N</i>-glycans from diverse biological samples.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jproteome.4c00657","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The ability to rapidly analyze complex mixtures of glycans derived from glycoproteins is important, but techniques are often laborious and require multiple glycan derivatization steps. Here, we describe an approach termed Swift Universal Glycan Acquisition (SUGA) in which the total released, nonreduced N-glycan samples are analyzed following direct injection and electrospray ionization in a mass spectrometer with a rapid 3 min run time for each sample. As electrospray ionization (ESI) can generate multiple charge states and adducts for the same glycan composition (MS1), deconvolution is performed to yield the relative intensity profile for each detected glycan composition; each annotated composition is supported by an annotated MS2 spectrum. This combination of MS1 and MS2 data enables confident glycan identification. The data obtained by SUGA are comparable to those obtained using permethylated N-glycans analyzed by matrix-assisted laser desorption/ionization (MALDI)-MS. The SUGA approach was applied to the analyses of several purified glycoproteins and N-glycans derived from cells and compared to spectra obtained following permethylation and analysis by MALDI-MS. This new approach will facilitate the rapid and high-throughput analysis of N-glycans from diverse biological samples.
期刊介绍:
Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".