{"title":"Sensitivity Calibration of Triaxial High-g Accelerometer Based on the Transverse Effect of Hopkinson Bar","authors":"Fei Teng;Wenyi Zhang;Zhenhai Zhang","doi":"10.1109/TIM.2025.3541659","DOIUrl":null,"url":null,"abstract":"This article proposes a sensitivity calibration method for triaxial accelerometers, aiming to eliminate calibration errors caused by the transverse effects of the calibration device on the accelerometers. First, we establish a matrix model that relates the triaxial acceleration excitation loads to the sensor voltage sensitivity. Next, we introduce an orthogonal calibration method based on the Hopkinson bar. Using three laser Doppler velocimeters (LDVs), we simultaneously measure the 3-D orthogonal excitation acceleration at the end of the calibration device. We then calculate the impact of the transverse coupling effect between the elastic rod and the anvil on the accelerometer calibration. Finally, we perform calibration experiments on triaxial high-g accelerometers using the proposed and conventional methods. The sensitivity matrices for each method were computed using the least squares method. We evaluate the calibration accuracy using relative error and root mean square error (RMSE) metrics. The results demonstrate that the proposed orthogonal calibration method reduces the average relative error by 60.3% and the RMSE by 64.3% compared with the conventional calibration method. The proposed orthogonal calibration method achieves higher precision and better reflects the sensitivity characteristics of triaxial accelerometers.","PeriodicalId":13341,"journal":{"name":"IEEE Transactions on Instrumentation and Measurement","volume":"74 ","pages":"1-9"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Instrumentation and Measurement","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10884952/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This article proposes a sensitivity calibration method for triaxial accelerometers, aiming to eliminate calibration errors caused by the transverse effects of the calibration device on the accelerometers. First, we establish a matrix model that relates the triaxial acceleration excitation loads to the sensor voltage sensitivity. Next, we introduce an orthogonal calibration method based on the Hopkinson bar. Using three laser Doppler velocimeters (LDVs), we simultaneously measure the 3-D orthogonal excitation acceleration at the end of the calibration device. We then calculate the impact of the transverse coupling effect between the elastic rod and the anvil on the accelerometer calibration. Finally, we perform calibration experiments on triaxial high-g accelerometers using the proposed and conventional methods. The sensitivity matrices for each method were computed using the least squares method. We evaluate the calibration accuracy using relative error and root mean square error (RMSE) metrics. The results demonstrate that the proposed orthogonal calibration method reduces the average relative error by 60.3% and the RMSE by 64.3% compared with the conventional calibration method. The proposed orthogonal calibration method achieves higher precision and better reflects the sensitivity characteristics of triaxial accelerometers.
期刊介绍:
Papers are sought that address innovative solutions to the development and use of electrical and electronic instruments and equipment to measure, monitor and/or record physical phenomena for the purpose of advancing measurement science, methods, functionality and applications. The scope of these papers may encompass: (1) theory, methodology, and practice of measurement; (2) design, development and evaluation of instrumentation and measurement systems and components used in generating, acquiring, conditioning and processing signals; (3) analysis, representation, display, and preservation of the information obtained from a set of measurements; and (4) scientific and technical support to establishment and maintenance of technical standards in the field of Instrumentation and Measurement.