Ultrafast Photocatalytic Decontamination of Mustard Gas Simulant and Thermodynamic Insights by a Metal-Free Imidazoline Porous Organic Polymer

IF 7.2 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Gourab K. Dam, Vartika Jaiswal, Sumanta Let, Anirban Roy, Sudip Maity, Shalu Rana, Sujit K. Ghosh
{"title":"Ultrafast Photocatalytic Decontamination of Mustard Gas Simulant and Thermodynamic Insights by a Metal-Free Imidazoline Porous Organic Polymer","authors":"Gourab K. Dam, Vartika Jaiswal, Sumanta Let, Anirban Roy, Sudip Maity, Shalu Rana, Sujit K. Ghosh","doi":"10.1021/acs.chemmater.4c02959","DOIUrl":null,"url":null,"abstract":"Detoxification of mustard gas through selective partial oxidation to sulfoxide is efficient yet challenging due to the hazardous nature of the overoxidized sulfone product. Metal-free imidazoline-based POPs, an emerging class of efficient photosensitizers with excellent chemical stability, incorporate both electron-rich and electron-deficient units with donor–acceptor junctions. In this study, we developed a highly photoactive protonated imidazoline-based POP, IPM-401, illustrating mild oxidizing power and enhanced ROS generation capability. Toward the detoxification of mustard gas simulant 2-chloroethyl ethyl sulfide (CEES), IPM-401 displayed excellent performance with ultrafast kinetics of <i>t</i><sub>1/2</sub> = 4.9 min in O<sub>2</sub>-saturated and <i>t</i><sub>1/2</sub> = 5.7 min under aerobic atmosphere, respectively, utilizing MeOH as the suitable solvent system. Additionally, ITC analysis revealed a favorable thermodynamic interaction (Δ<i>G</i> = −6.39 kcal/mol) between IPM-401 and CEES. Density functional theory calculations further validated this interaction, confirming the favorable binding of CEES to the imidazoline moiety of IPM-401. The underlying detoxification mechanism in different solvent systems is further advocated by experimental data. IPM-401 also demonstrates its versatile photocatalytic activity toward sulfide and aromatic aldehyde oxidation reactions across a broad range of substrates. Furthermore, the practical relevance of chemically stable IPM-401 was also established from its satisfactory recyclability performance up to 10 cycles.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"29 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemmater.4c02959","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Detoxification of mustard gas through selective partial oxidation to sulfoxide is efficient yet challenging due to the hazardous nature of the overoxidized sulfone product. Metal-free imidazoline-based POPs, an emerging class of efficient photosensitizers with excellent chemical stability, incorporate both electron-rich and electron-deficient units with donor–acceptor junctions. In this study, we developed a highly photoactive protonated imidazoline-based POP, IPM-401, illustrating mild oxidizing power and enhanced ROS generation capability. Toward the detoxification of mustard gas simulant 2-chloroethyl ethyl sulfide (CEES), IPM-401 displayed excellent performance with ultrafast kinetics of t1/2 = 4.9 min in O2-saturated and t1/2 = 5.7 min under aerobic atmosphere, respectively, utilizing MeOH as the suitable solvent system. Additionally, ITC analysis revealed a favorable thermodynamic interaction (ΔG = −6.39 kcal/mol) between IPM-401 and CEES. Density functional theory calculations further validated this interaction, confirming the favorable binding of CEES to the imidazoline moiety of IPM-401. The underlying detoxification mechanism in different solvent systems is further advocated by experimental data. IPM-401 also demonstrates its versatile photocatalytic activity toward sulfide and aromatic aldehyde oxidation reactions across a broad range of substrates. Furthermore, the practical relevance of chemically stable IPM-401 was also established from its satisfactory recyclability performance up to 10 cycles.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemistry of Materials
Chemistry of Materials 工程技术-材料科学:综合
CiteScore
14.10
自引率
5.80%
发文量
929
审稿时长
1.5 months
期刊介绍: The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信