Warming-induced retreat of West Antarctic glaciers weakened carbon sequestration ability but increased mercury enrichment

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Chengzhen Zhou, Maodian Liu, Robert P. Mason, Prakhin Assavapanuvat, Nikki H. Zhang, Thomas S. Bianchi, Qianru Zhang, Xiaolong Li, Ruoyu Sun, Jiubin Chen, Xuejun Wang, Peter A. Raymond
{"title":"Warming-induced retreat of West Antarctic glaciers weakened carbon sequestration ability but increased mercury enrichment","authors":"Chengzhen Zhou, Maodian Liu, Robert P. Mason, Prakhin Assavapanuvat, Nikki H. Zhang, Thomas S. Bianchi, Qianru Zhang, Xiaolong Li, Ruoyu Sun, Jiubin Chen, Xuejun Wang, Peter A. Raymond","doi":"10.1038/s41467-025-57085-1","DOIUrl":null,"url":null,"abstract":"<p>The Southern Ocean, one of Earth’s most productive areas, is widely recognized as a major sink for atmospheric carbon and mercury, tightly coupling primary production with the sedimentary sequestration of these elements. The impacts of climate warming on these processes, however, remain unclear. Here, we utilize 20 sediment cores from the Ross Sea, a representative ice-shelf sea in West Antarctica, to examine how Holocene warming and extensive glacial retreat influenced carbon and mercury sequestration. We find that organic carbon (OC) burial has been relatively constant over the past 12,000 years, whereas mercury burial in the Ross Embayment and open ocean exhibited three- and eightfold increases, respectively. Carbon isotopes and accumulation profiles suggest warming boosted glacial- and terrestrial-derived OC inputs to the ocean, while trace elements and biomarkers reveal a declining contribution offshore. Biomarker ratios further indicate greater remineralization of this OC in the open ocean. Consequently, enhanced OC degradation, coupled with rising external mercury inputs, drives mercury enrichment in marine sediments before reaching the seafloor. These findings imply that ongoing warming could trigger a positive feedback loop, accelerating OC degradation into CO<sub>2</sub> and amplifying the impacts of anthropogenic mercury on Southern Ocean ecosystems.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-57085-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The Southern Ocean, one of Earth’s most productive areas, is widely recognized as a major sink for atmospheric carbon and mercury, tightly coupling primary production with the sedimentary sequestration of these elements. The impacts of climate warming on these processes, however, remain unclear. Here, we utilize 20 sediment cores from the Ross Sea, a representative ice-shelf sea in West Antarctica, to examine how Holocene warming and extensive glacial retreat influenced carbon and mercury sequestration. We find that organic carbon (OC) burial has been relatively constant over the past 12,000 years, whereas mercury burial in the Ross Embayment and open ocean exhibited three- and eightfold increases, respectively. Carbon isotopes and accumulation profiles suggest warming boosted glacial- and terrestrial-derived OC inputs to the ocean, while trace elements and biomarkers reveal a declining contribution offshore. Biomarker ratios further indicate greater remineralization of this OC in the open ocean. Consequently, enhanced OC degradation, coupled with rising external mercury inputs, drives mercury enrichment in marine sediments before reaching the seafloor. These findings imply that ongoing warming could trigger a positive feedback loop, accelerating OC degradation into CO2 and amplifying the impacts of anthropogenic mercury on Southern Ocean ecosystems.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信