Richard G Lahr, Makenzie Meyer, Leah Nelson, Lisa A Kottschade, Paul J Jannetto, Yifei K Yang
{"title":"Performance Comparison of Liquid Chromatography and Paper Spray Ionization with Mass Spectrometry for Measuring Kinase Inhibitors in Human Plasma.","authors":"Richard G Lahr, Makenzie Meyer, Leah Nelson, Lisa A Kottschade, Paul J Jannetto, Yifei K Yang","doi":"10.1021/acsptsci.4c00646","DOIUrl":null,"url":null,"abstract":"<p><p>Kinase inhibitors are small-molecule drugs designed to target oncogenic mutations in cancer treatment. Although less toxic than conventional chemotherapy drugs, they can cause severe adverse effects in some patients, resulting in dose reduction and cessation. To evaluate if therapeutic drug monitoring of kinase inhibitors and their metabolites can improve toxicity assessment in patients, we developed and evaluated the analytical performance of two parallel methods utilizing liquid chromatography (LC) and paper spray (PS) ionization coupled with a triple quadrupole mass spectrometer (MS) for the measurement of dabrafenib, its major metabolite OH-dabrafenib, and trametinib in patient plasma samples. The PS-MS method yielded a faster sample analysis time (2 min) compared to the LC separation (9 min). The two methods shared the same analytical measurement range (AMR) for dabrafenib and OH-dabrafenib (10-3500 and 10-1250 ng/mL), but the AMR differed for trametinib (LC-MS: 0.5-50 ng/mL; PS-MS: 5.0-50 ng/mL). The imprecision across their respective AMR was 1.3-6.5% (dabrafenib), 3.0-9.7% (OH-dabrafenib), and 1.3-5.1% (trametinib) for the LC-MS method and 3.8-6.7% (dabrafenib), 4.0-8.9% (OH-dabrafenib), and 3.2-9.9% (trametinib) for the PS-MS method. Using authentic patient samples, the quantification results were comparable between the two methods: dabrafenib (correlation coefficient <i>r</i> = 0.9977), OH-dabrafenib (<i>r</i> = 0.885), and trametinib (<i>r</i> = 0.9807). Nonetheless, the PS-MS method displayed significantly higher variations compared with the LC-MS method. Based on the LC-MS method, we were able to profile the concentrations and metabolism patterns of dabrafenib and trametinib in patients who were receiving the drugs for BRAF V600 mutation-driven malignancies.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"8 2","pages":"557-565"},"PeriodicalIF":4.9000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11834250/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Pharmacology and Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsptsci.4c00646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/14 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Kinase inhibitors are small-molecule drugs designed to target oncogenic mutations in cancer treatment. Although less toxic than conventional chemotherapy drugs, they can cause severe adverse effects in some patients, resulting in dose reduction and cessation. To evaluate if therapeutic drug monitoring of kinase inhibitors and their metabolites can improve toxicity assessment in patients, we developed and evaluated the analytical performance of two parallel methods utilizing liquid chromatography (LC) and paper spray (PS) ionization coupled with a triple quadrupole mass spectrometer (MS) for the measurement of dabrafenib, its major metabolite OH-dabrafenib, and trametinib in patient plasma samples. The PS-MS method yielded a faster sample analysis time (2 min) compared to the LC separation (9 min). The two methods shared the same analytical measurement range (AMR) for dabrafenib and OH-dabrafenib (10-3500 and 10-1250 ng/mL), but the AMR differed for trametinib (LC-MS: 0.5-50 ng/mL; PS-MS: 5.0-50 ng/mL). The imprecision across their respective AMR was 1.3-6.5% (dabrafenib), 3.0-9.7% (OH-dabrafenib), and 1.3-5.1% (trametinib) for the LC-MS method and 3.8-6.7% (dabrafenib), 4.0-8.9% (OH-dabrafenib), and 3.2-9.9% (trametinib) for the PS-MS method. Using authentic patient samples, the quantification results were comparable between the two methods: dabrafenib (correlation coefficient r = 0.9977), OH-dabrafenib (r = 0.885), and trametinib (r = 0.9807). Nonetheless, the PS-MS method displayed significantly higher variations compared with the LC-MS method. Based on the LC-MS method, we were able to profile the concentrations and metabolism patterns of dabrafenib and trametinib in patients who were receiving the drugs for BRAF V600 mutation-driven malignancies.
期刊介绍:
ACS Pharmacology & Translational Science publishes high quality, innovative, and impactful research across the broad spectrum of biological sciences, covering basic and molecular sciences through to translational preclinical studies. Clinical studies that address novel mechanisms of action, and methodological papers that provide innovation, and advance translation, will also be considered. We give priority to studies that fully integrate basic pharmacological and/or biochemical findings into physiological processes that have translational potential in a broad range of biomedical disciplines. Therefore, studies that employ a complementary blend of in vitro and in vivo systems are of particular interest to the journal. Nonetheless, all innovative and impactful research that has an articulated translational relevance will be considered.
ACS Pharmacology & Translational Science does not publish research on biological extracts that have unknown concentration or unknown chemical composition.
Authors are encouraged to use the pre-submission inquiry mechanism to ensure relevance and appropriateness of research.