Metabolomic insight into the link of intermuscular fat with cognitive performance: the Health ABC Study

IF 5.3 2区 医学 Q1 GERIATRICS & GERONTOLOGY
Richard Xu, Qu Tian, Megan M. Marron, Luigi Ferrucci, Shanshan Yao, Seyoung Kim, Ravi V. Shah, Venkatesh L. Murthy, Anne B. Newman, Iva Miljkovic, Caterina Rosano
{"title":"Metabolomic insight into the link of intermuscular fat with cognitive performance: the Health ABC Study","authors":"Richard Xu, Qu Tian, Megan M. Marron, Luigi Ferrucci, Shanshan Yao, Seyoung Kim, Ravi V. Shah, Venkatesh L. Murthy, Anne B. Newman, Iva Miljkovic, Caterina Rosano","doi":"10.1007/s11357-025-01559-z","DOIUrl":null,"url":null,"abstract":"<p>There is growing evidence that higher intermuscular fat (IMF) is associated with worse processing speed, measured by the digit symbol substitution test (DSST) in older adults. However, the underlying biological mechanisms are not well understood. Considering that both muscle and the brain are metabolically active organs, we sought to identify metabolites that may explain the IMF-DSST association. We assessed 613 plasma metabolites in 2388 participants from the Health, Aging, and Body Composition Study (mean age ± SD 74.7 ± 2.9 years, 50% men, 63% white), using liquid chromatography-mass spectrometry. We confirmed that higher IMF was associated with worse DSST scores (standardized beta (95% CI) − 0.08 (− 0.12, − 0.03), <i>p</i> &lt; 0.001). Sixty-six metabolites were significantly associated with both IMF and DSST. Four of the 66 metabolites attenuated the association by ≥ 10%: higher levels of adrenic acid (polyunsaturated fatty acid), and lower levels of C20:5 lysophosphatidylcholine (lysophospholipid), 1-methylnicotinamide (vitamin B3-related myokine), and maslinic acid (triterpene) were associated with higher IMF and worse DSST. Together, they explained 41% of the IMF-DSST association. Pathway enrichment analyses identified two significant shared pathways: unsaturated fatty acid metabolism and the citrate (TCA) cycle. This study provides hypothesis-generating evidence that a set of circulating metabolites related to unsaturated fatty acids, energy metabolism, and myokines may partially explain the inverse association of IMF with processing speed. The findings, if further confirmed by independent studies, advance our understanding of molecular pathways underlying muscle-brain crosstalk. Whether the identified metabolites are early predictors of future decline in processing speed should be further investigated.</p>","PeriodicalId":12730,"journal":{"name":"GeroScience","volume":"17 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GeroScience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11357-025-01559-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

There is growing evidence that higher intermuscular fat (IMF) is associated with worse processing speed, measured by the digit symbol substitution test (DSST) in older adults. However, the underlying biological mechanisms are not well understood. Considering that both muscle and the brain are metabolically active organs, we sought to identify metabolites that may explain the IMF-DSST association. We assessed 613 plasma metabolites in 2388 participants from the Health, Aging, and Body Composition Study (mean age ± SD 74.7 ± 2.9 years, 50% men, 63% white), using liquid chromatography-mass spectrometry. We confirmed that higher IMF was associated with worse DSST scores (standardized beta (95% CI) − 0.08 (− 0.12, − 0.03), p < 0.001). Sixty-six metabolites were significantly associated with both IMF and DSST. Four of the 66 metabolites attenuated the association by ≥ 10%: higher levels of adrenic acid (polyunsaturated fatty acid), and lower levels of C20:5 lysophosphatidylcholine (lysophospholipid), 1-methylnicotinamide (vitamin B3-related myokine), and maslinic acid (triterpene) were associated with higher IMF and worse DSST. Together, they explained 41% of the IMF-DSST association. Pathway enrichment analyses identified two significant shared pathways: unsaturated fatty acid metabolism and the citrate (TCA) cycle. This study provides hypothesis-generating evidence that a set of circulating metabolites related to unsaturated fatty acids, energy metabolism, and myokines may partially explain the inverse association of IMF with processing speed. The findings, if further confirmed by independent studies, advance our understanding of molecular pathways underlying muscle-brain crosstalk. Whether the identified metabolites are early predictors of future decline in processing speed should be further investigated.

求助全文
约1分钟内获得全文 求助全文
来源期刊
GeroScience
GeroScience Medicine-Complementary and Alternative Medicine
CiteScore
10.50
自引率
5.40%
发文量
182
期刊介绍: GeroScience is a bi-monthly, international, peer-reviewed journal that publishes articles related to research in the biology of aging and research on biomedical applications that impact aging. The scope of articles to be considered include evolutionary biology, biophysics, genetics, genomics, proteomics, molecular biology, cell biology, biochemistry, endocrinology, immunology, physiology, pharmacology, neuroscience, and psychology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信