Irisin alleviates hepatic steatosis by activating the autophagic SIRT3 pathway.

IF 7.5 3区 医学 Q1 MEDICINE, GENERAL & INTERNAL
Ying Zhao, Jia Li, Anran Ma, Zhihong Wang, Yunzhi Ni, Di Wu, Yue Zhou, Na Zhang, Li Zhang, Yongsheng Chang, Qinghua Wang
{"title":"Irisin alleviates hepatic steatosis by activating the autophagic SIRT3 pathway.","authors":"Ying Zhao, Jia Li, Anran Ma, Zhihong Wang, Yunzhi Ni, Di Wu, Yue Zhou, Na Zhang, Li Zhang, Yongsheng Chang, Qinghua Wang","doi":"10.1097/CM9.0000000000003427","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Disruption of hepatic lipid homeostasis leads to excessive hepatic triglyceride accumulation and the development of metabolic dysfunction-associated steatotic liver disease (MASLD). Autophagy, a critical process in liver lipid metabolism, is impaired in MASLD pathogenesis. Irisin, a skeletal muscle-driven myokine, regulates lipid metabolism, but its impact on hepatic lipid metabolism is not well understood. Here, we aimed to explore the role of irisin in hepatic steatosis and the underlying mechanisms involved.</p><p><strong>Methods: </strong>A high-fat diet (HFD)-induced MASLD mouse model was used, and the recombinant irisin protein, herein referred to as \"Irisin\", was intraperitoneally administered for 4 weeks to evaluate the effects of irisin on hepatic lipid accumulation. Liver tissues were stained with Oil red O (ORO), and triglyceride (TG) and total cholesterol (TC) contents were measured in serum and liver homogenates. The expression of the autophagosome marker microtubule-associated protein 1 light chain 3 (LC3), the autophagy receptor protein sequestosome-1 (SQSTM1/p62), autophagy initiation complex unc-51-like kinase 1 (ULK1) and the lysosomal functional protein cathepsin B was measured via Western blotting, and the expression of the transcription factor EB (TFEB) was analyzed via immunofluorescence to explore autophagic changes. The effect of irisin on autophagic flux was further evaluated in palmitic acid-induced HepG2 cells by measuring autophagic degradation with chloroquine (CQ), and analyzing the colocalization of LC3 and lysosome-associated protein 1 (LAMP1). The possible mechanism was examined by measuring the expression of the autophagic sirtuin 3 (SIRT3) pathway and further validated using overexpression of SIRT3 with plasmid transfection or siRNA-mediated knockdown. Student's t-test was utilized for statistical analysis.</p><p><strong>Results: </strong>Irisin significantly reduces hepatic lipid accumulation in mice fed with HFD, accompanied by enhanced hepatocyte autophagy and upregulation of the SIRT3 pathway. In HepG2 cells, Irisin attenuated palmitic acid-induced lipid accumulation, which was partially dependent on SIRT3 levels. Mechanistically, Irisin treatment upregulated SIRT3 and phosphorylated AMP-activated protein kinase (AMPK), inhibited mammalian target of rapamycin (mTOR) activity, promoted TFEB nucleus translocation, increased cathepsin B expression, enhanced autophagic degradation, and alleviated hepatic steatosis. No significant changes in phosphorylation of ULK1 in the hepatocytes were observed. However, when siRNA was used to knock down SIRT3, the changes of those protein were partially reversed, and hepatic steatosis was further exacerbated.</p><p><strong>Conclusions: </strong>Our findings highlight irisin as a potential therapeutic for hepatic steatosis by modulating autophagy and lipid metabolism, potentially providing a novel therapeutic target for the management of MASLD. Further research is needed to elucidate the underlying mechanisms and explore the potential clinical applications of this approach in the treatment of MASLD.</p>","PeriodicalId":10183,"journal":{"name":"Chinese Medical Journal","volume":" ","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Medical Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/CM9.0000000000003427","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Disruption of hepatic lipid homeostasis leads to excessive hepatic triglyceride accumulation and the development of metabolic dysfunction-associated steatotic liver disease (MASLD). Autophagy, a critical process in liver lipid metabolism, is impaired in MASLD pathogenesis. Irisin, a skeletal muscle-driven myokine, regulates lipid metabolism, but its impact on hepatic lipid metabolism is not well understood. Here, we aimed to explore the role of irisin in hepatic steatosis and the underlying mechanisms involved.

Methods: A high-fat diet (HFD)-induced MASLD mouse model was used, and the recombinant irisin protein, herein referred to as "Irisin", was intraperitoneally administered for 4 weeks to evaluate the effects of irisin on hepatic lipid accumulation. Liver tissues were stained with Oil red O (ORO), and triglyceride (TG) and total cholesterol (TC) contents were measured in serum and liver homogenates. The expression of the autophagosome marker microtubule-associated protein 1 light chain 3 (LC3), the autophagy receptor protein sequestosome-1 (SQSTM1/p62), autophagy initiation complex unc-51-like kinase 1 (ULK1) and the lysosomal functional protein cathepsin B was measured via Western blotting, and the expression of the transcription factor EB (TFEB) was analyzed via immunofluorescence to explore autophagic changes. The effect of irisin on autophagic flux was further evaluated in palmitic acid-induced HepG2 cells by measuring autophagic degradation with chloroquine (CQ), and analyzing the colocalization of LC3 and lysosome-associated protein 1 (LAMP1). The possible mechanism was examined by measuring the expression of the autophagic sirtuin 3 (SIRT3) pathway and further validated using overexpression of SIRT3 with plasmid transfection or siRNA-mediated knockdown. Student's t-test was utilized for statistical analysis.

Results: Irisin significantly reduces hepatic lipid accumulation in mice fed with HFD, accompanied by enhanced hepatocyte autophagy and upregulation of the SIRT3 pathway. In HepG2 cells, Irisin attenuated palmitic acid-induced lipid accumulation, which was partially dependent on SIRT3 levels. Mechanistically, Irisin treatment upregulated SIRT3 and phosphorylated AMP-activated protein kinase (AMPK), inhibited mammalian target of rapamycin (mTOR) activity, promoted TFEB nucleus translocation, increased cathepsin B expression, enhanced autophagic degradation, and alleviated hepatic steatosis. No significant changes in phosphorylation of ULK1 in the hepatocytes were observed. However, when siRNA was used to knock down SIRT3, the changes of those protein were partially reversed, and hepatic steatosis was further exacerbated.

Conclusions: Our findings highlight irisin as a potential therapeutic for hepatic steatosis by modulating autophagy and lipid metabolism, potentially providing a novel therapeutic target for the management of MASLD. Further research is needed to elucidate the underlying mechanisms and explore the potential clinical applications of this approach in the treatment of MASLD.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Medical Journal
Chinese Medical Journal 医学-医学:内科
CiteScore
9.80
自引率
4.90%
发文量
19245
审稿时长
6 months
期刊介绍: The Chinese Medical Journal (CMJ) is published semimonthly in English by the Chinese Medical Association, and is a peer reviewed general medical journal for all doctors, researchers, and health workers regardless of their medical specialty or type of employment. Established in 1887, it is the oldest medical periodical in China and is distributed worldwide. The journal functions as a window into China’s medical sciences and reflects the advances and progress in China’s medical sciences and technology. It serves the objective of international academic exchange. The journal includes Original Articles, Editorial, Review Articles, Medical Progress, Brief Reports, Case Reports, Viewpoint, Clinical Exchange, Letter,and News,etc. CMJ is abstracted or indexed in many databases including Biological Abstracts, Chemical Abstracts, Index Medicus/Medline, Science Citation Index (SCI), Current Contents, Cancerlit, Health Plan & Administration, Embase, Social Scisearch, Aidsline, Toxline, Biocommercial Abstracts, Arts and Humanities Search, Nuclear Science Abstracts, Water Resources Abstracts, Cab Abstracts, Occupation Safety & Health, etc. In 2007, the impact factor of the journal by SCI is 0.636, and the total citation is 2315.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信