Cement roof tiles manufactured with PET waste: Experimental tests and thermal building simulations

IF 9.7 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Ivan Julio Apolonio Callejas , Emeli Lalesca Aparecida da Guarda , Luciane Cleonice Durante , Eduardo Krüger
{"title":"Cement roof tiles manufactured with PET waste: Experimental tests and thermal building simulations","authors":"Ivan Julio Apolonio Callejas ,&nbsp;Emeli Lalesca Aparecida da Guarda ,&nbsp;Luciane Cleonice Durante ,&nbsp;Eduardo Krüger","doi":"10.1016/j.jclepro.2025.145063","DOIUrl":null,"url":null,"abstract":"<div><div>A number of studies have demonstrated the feasibility of recycling Polyethylene Terephthalate (PET) as an input for manufacturing mortar or concrete artifacts. In this study, the thermal performance of extruded cement tiles manufactured with partial replacement of fine aggregate using PET flakes was gauged. Physical properties (solar absorptance) and thermal properties (emissivity, conductivity, and thermal capacity) of tiles with and without PET incorporation were evaluated. Using characteristic properties obtained from measured data, thermal simulations were performed for a single-family building intended for the Brazilian social housing. Surface Heat Balance Approach was employed to identify the impact of using different tiles as an external component in two different roof geometries: without a ceiling and with an attic space as buffer zone. The indoor Standard Effective Temperature was also assessed so as to inform potential benefits of the PET tiles for both roof geometries in terms of thermal comfort across the year and during an overheating period. Notably, due to the texture and coloring of the PET flakes, there was a reduction in solar absorptance and an increase in thermal emissivity. Replacing sand by PET into the cement matrix led to a 12.5% reduction in thermal conductivity and a 30% increase in thermal capacity for the tiles. In both roof geometries simulated, the adoption of PET tiles consistently improved thermal insulation, slightly reducing heat gains through the roof system. PET tiles and attic combined can reduce the severity and intensity of the indoor environments during overheating events, providing conditions that are more tolerable to occupants. Therefore, cement tiles incorporating PET represent a technically viable strategy for promoting urban sustainability, while also preventing the release of PET waste into illegal areas or landfills, thereby complying with the 2030 Agenda for Sustainable Development.</div></div>","PeriodicalId":349,"journal":{"name":"Journal of Cleaner Production","volume":"495 ","pages":"Article 145063"},"PeriodicalIF":9.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cleaner Production","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959652625004135","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

A number of studies have demonstrated the feasibility of recycling Polyethylene Terephthalate (PET) as an input for manufacturing mortar or concrete artifacts. In this study, the thermal performance of extruded cement tiles manufactured with partial replacement of fine aggregate using PET flakes was gauged. Physical properties (solar absorptance) and thermal properties (emissivity, conductivity, and thermal capacity) of tiles with and without PET incorporation were evaluated. Using characteristic properties obtained from measured data, thermal simulations were performed for a single-family building intended for the Brazilian social housing. Surface Heat Balance Approach was employed to identify the impact of using different tiles as an external component in two different roof geometries: without a ceiling and with an attic space as buffer zone. The indoor Standard Effective Temperature was also assessed so as to inform potential benefits of the PET tiles for both roof geometries in terms of thermal comfort across the year and during an overheating period. Notably, due to the texture and coloring of the PET flakes, there was a reduction in solar absorptance and an increase in thermal emissivity. Replacing sand by PET into the cement matrix led to a 12.5% reduction in thermal conductivity and a 30% increase in thermal capacity for the tiles. In both roof geometries simulated, the adoption of PET tiles consistently improved thermal insulation, slightly reducing heat gains through the roof system. PET tiles and attic combined can reduce the severity and intensity of the indoor environments during overheating events, providing conditions that are more tolerable to occupants. Therefore, cement tiles incorporating PET represent a technically viable strategy for promoting urban sustainability, while also preventing the release of PET waste into illegal areas or landfills, thereby complying with the 2030 Agenda for Sustainable Development.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cleaner Production
Journal of Cleaner Production 环境科学-工程:环境
CiteScore
20.40
自引率
9.00%
发文量
4720
审稿时长
111 days
期刊介绍: The Journal of Cleaner Production is an international, transdisciplinary journal that addresses and discusses theoretical and practical Cleaner Production, Environmental, and Sustainability issues. It aims to help societies become more sustainable by focusing on the concept of 'Cleaner Production', which aims at preventing waste production and increasing efficiencies in energy, water, resources, and human capital use. The journal serves as a platform for corporations, governments, education institutions, regions, and societies to engage in discussions and research related to Cleaner Production, environmental, and sustainability practices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信