How much can we save by applying artificial intelligence in evidence synthesis? Results from a pragmatic review to quantify workload efficiencies and cost savings.

IF 4.4 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Frontiers in Pharmacology Pub Date : 2025-01-31 eCollection Date: 2025-01-01 DOI:10.3389/fphar.2025.1454245
Seye Abogunrin, Jeffrey M Muir, Clarissa Zerbini, Grammati Sarri
{"title":"How much can we save by applying artificial intelligence in evidence synthesis? Results from a pragmatic review to quantify workload efficiencies and cost savings.","authors":"Seye Abogunrin, Jeffrey M Muir, Clarissa Zerbini, Grammati Sarri","doi":"10.3389/fphar.2025.1454245","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Researchers are increasingly exploring the use of artificial intelligence (AI) tools in evidence synthesis, a labor-intensive, time-consuming, and costly effort. This review explored and quantified the potential efficiency benefits of using automated tools as part of core evidence synthesis activities compared with human-led methods.</p><p><strong>Methods: </strong>We searched the MEDLINE and Embase databases for English-language articles published between 2012 and 14 November 2023, and hand-searched the ISPOR presentations database (2020-2023) for articles presenting quantitative results on workload efficiency in systematic literature reviews (SLR) when AI automation tools were utilized. Data on efficiencies (time- and cost-related) were collected.</p><p><strong>Results: </strong>We identified 25 eligible studies: 13 used machine learning, 10 used natural language processing, and once each used a systematic review automation tool and a non-specified AI tool. In 17 studies, a >50% time reduction was observed, with 5-to 6-fold decreases in abstract review time. When the number of abstracts reviewed was examined, decreases of 55%-64% were noted. Studies examining work saved over sampling at 95% recall reported 6- to 10-fold decreases in workload with automation. No studies quantified the economic impact associated with automation, although one study found that there was an overall labor reduction of >75% over manual methods during dual-screen reviews.</p><p><strong>Discussion: </strong>AI can reduce both workload and create time efficiencies when applied to evidence gathering efforts in SLRs. These improvements can facilitate the implementation of novel approaches in decision making that consider the real-life value of health technologies. Further research should quantify the economic impact of automation in SLRs.</p>","PeriodicalId":12491,"journal":{"name":"Frontiers in Pharmacology","volume":"16 ","pages":"1454245"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11826052/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fphar.2025.1454245","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Researchers are increasingly exploring the use of artificial intelligence (AI) tools in evidence synthesis, a labor-intensive, time-consuming, and costly effort. This review explored and quantified the potential efficiency benefits of using automated tools as part of core evidence synthesis activities compared with human-led methods.

Methods: We searched the MEDLINE and Embase databases for English-language articles published between 2012 and 14 November 2023, and hand-searched the ISPOR presentations database (2020-2023) for articles presenting quantitative results on workload efficiency in systematic literature reviews (SLR) when AI automation tools were utilized. Data on efficiencies (time- and cost-related) were collected.

Results: We identified 25 eligible studies: 13 used machine learning, 10 used natural language processing, and once each used a systematic review automation tool and a non-specified AI tool. In 17 studies, a >50% time reduction was observed, with 5-to 6-fold decreases in abstract review time. When the number of abstracts reviewed was examined, decreases of 55%-64% were noted. Studies examining work saved over sampling at 95% recall reported 6- to 10-fold decreases in workload with automation. No studies quantified the economic impact associated with automation, although one study found that there was an overall labor reduction of >75% over manual methods during dual-screen reviews.

Discussion: AI can reduce both workload and create time efficiencies when applied to evidence gathering efforts in SLRs. These improvements can facilitate the implementation of novel approaches in decision making that consider the real-life value of health technologies. Further research should quantify the economic impact of automation in SLRs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Pharmacology
Frontiers in Pharmacology PHARMACOLOGY & PHARMACY-
CiteScore
7.80
自引率
8.90%
发文量
5163
审稿时长
14 weeks
期刊介绍: Frontiers in Pharmacology is a leading journal in its field, publishing rigorously peer-reviewed research across disciplines, including basic and clinical pharmacology, medicinal chemistry, pharmacy and toxicology. Field Chief Editor Heike Wulff at UC Davis is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信