Microplastics Exposure Causes the Growth Hormone Resistance on the Stem Cell

IF 3.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Meng Zhang, Ruoting Zhang, Yuebing Kong, Jiawen Li, Guoxia Wang, Deyi Wu, Hainan Lan, Min Wu
{"title":"Microplastics Exposure Causes the Growth Hormone Resistance on the Stem Cell","authors":"Meng Zhang,&nbsp;Ruoting Zhang,&nbsp;Yuebing Kong,&nbsp;Jiawen Li,&nbsp;Guoxia Wang,&nbsp;Deyi Wu,&nbsp;Hainan Lan,&nbsp;Min Wu","doi":"10.1002/jbt.70176","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>With the large range of applications for plastic products, the potential hazards of polystyrene microplastics (PS-MPs) as a hazardous substance have been widely concerned. Mesenchymal stem cells (MSCs) are important cells in the body with high self-renewal ability, multidirectional differentiation potential and low immunogenicity. Growth hormone (GH) has important biological regulatory effects on MSCs. However, the toxicological effects of PS-MPs on the role of GH in hMSCs are unclear yet. In this work, we explored the effects of PS-MPs on the biological activity of GH in hMSCs. Initially, we conducted experiments to investigate the cellular behavior of GH in hMSCs. It is noteworthy that poststimulation with PS-MPs, there was a significant reduction in the quantity of GH entering the cytoplasm, with almost negligible distribution observed in the cell nucleus. Consequently, we proceeded to examine the GH/GHR-mediated signaling pathways. The data revealed that poststimulation with PS-MPs, the downstream signaling pathways, including JAK2-STATs1/3/5, were significantly downregulated. To elucidate this intriguing finding, we delved further into the molecular mechanisms underlying the desensitization of GH/GHR signaling induced by PS-MPs. Experimental data demonstrated that the entry of PS-MPs into the cells resulted in a significant increase in intracellular reactive oxygen species (ROS), leading to cellular senescence. In summary, PS-MPs may induce desensitization of GH signaling in hMSCs through the ROS-induced cellular senescence. This study provides crucial insights into the biological effects of PS-MPs on the GH bioactivity in hMSCs.</p></div>","PeriodicalId":15151,"journal":{"name":"Journal of Biochemical and Molecular Toxicology","volume":"39 2","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemical and Molecular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70176","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

With the large range of applications for plastic products, the potential hazards of polystyrene microplastics (PS-MPs) as a hazardous substance have been widely concerned. Mesenchymal stem cells (MSCs) are important cells in the body with high self-renewal ability, multidirectional differentiation potential and low immunogenicity. Growth hormone (GH) has important biological regulatory effects on MSCs. However, the toxicological effects of PS-MPs on the role of GH in hMSCs are unclear yet. In this work, we explored the effects of PS-MPs on the biological activity of GH in hMSCs. Initially, we conducted experiments to investigate the cellular behavior of GH in hMSCs. It is noteworthy that poststimulation with PS-MPs, there was a significant reduction in the quantity of GH entering the cytoplasm, with almost negligible distribution observed in the cell nucleus. Consequently, we proceeded to examine the GH/GHR-mediated signaling pathways. The data revealed that poststimulation with PS-MPs, the downstream signaling pathways, including JAK2-STATs1/3/5, were significantly downregulated. To elucidate this intriguing finding, we delved further into the molecular mechanisms underlying the desensitization of GH/GHR signaling induced by PS-MPs. Experimental data demonstrated that the entry of PS-MPs into the cells resulted in a significant increase in intracellular reactive oxygen species (ROS), leading to cellular senescence. In summary, PS-MPs may induce desensitization of GH signaling in hMSCs through the ROS-induced cellular senescence. This study provides crucial insights into the biological effects of PS-MPs on the GH bioactivity in hMSCs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
2.80%
发文量
277
审稿时长
6-12 weeks
期刊介绍: The Journal of Biochemical and Molecular Toxicology is an international journal that contains original research papers, rapid communications, mini-reviews, and book reviews, all focusing on the molecular mechanisms of action and detoxication of exogenous and endogenous chemicals and toxic agents. The scope includes effects on the organism at all stages of development, on organ systems, tissues, and cells as well as on enzymes, receptors, hormones, and genes. The biochemical and molecular aspects of uptake, transport, storage, excretion, lactivation and detoxication of drugs, agricultural, industrial and environmental chemicals, natural products and food additives are all subjects suitable for publication. Of particular interest are aspects of molecular biology related to biochemical toxicology. These include studies of the expression of genes related to detoxication and activation enzymes, toxicants with modes of action involving effects on nucleic acids, gene expression and protein synthesis, and the toxicity of products derived from biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信