Shohini Bhattacharya, Renaud Boussarie, Yoshitaka Hatta
{"title":"Exploring orbital angular momentum and spin-orbit correlations for gluons at the Electron-Ion Collider","authors":"Shohini Bhattacharya, Renaud Boussarie, Yoshitaka Hatta","doi":"10.1103/physrevd.111.034019","DOIUrl":null,"url":null,"abstract":"In our previous work [S. Bhattacharya , ], we introduced a pioneering observable aimed at experimentally detecting the orbital angular momentum (OAM) of gluons. Our focus was on the longitudinal double spin asymmetry observed in exclusive dijet production during electron-proton scattering. We demonstrated the sensitivity of the cos</a:mi>ϕ</a:mi></a:math> angular correlation between the scattered electron and proton as a probe for gluon OAM at small <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mi>x</c:mi></c:math> and its intricate interplay with gluon helicity. This current work provides a comprehensive exposition, diving further into the aforementioned calculation with added elaboration and in-depth analysis. We reveal that, in addition to the gluon OAM, one also gains access to the spin-orbit correlation of gluons. We supplement our work with a detailed numerical analysis of our observables for the kinematics of the Electron-Ion Collider. In addition to dijet production, we also consider the recently proposed semi-inclusive diffractive deep inelastic scattering process, which potentially offers experimental advantages over dijet measurements. Finally, we investigate quark-channel contributions to these processes and find an unexpected breakdown of collinear factorization. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"21 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.034019","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
In our previous work [S. Bhattacharya , ], we introduced a pioneering observable aimed at experimentally detecting the orbital angular momentum (OAM) of gluons. Our focus was on the longitudinal double spin asymmetry observed in exclusive dijet production during electron-proton scattering. We demonstrated the sensitivity of the cosϕ angular correlation between the scattered electron and proton as a probe for gluon OAM at small x and its intricate interplay with gluon helicity. This current work provides a comprehensive exposition, diving further into the aforementioned calculation with added elaboration and in-depth analysis. We reveal that, in addition to the gluon OAM, one also gains access to the spin-orbit correlation of gluons. We supplement our work with a detailed numerical analysis of our observables for the kinematics of the Electron-Ion Collider. In addition to dijet production, we also consider the recently proposed semi-inclusive diffractive deep inelastic scattering process, which potentially offers experimental advantages over dijet measurements. Finally, we investigate quark-channel contributions to these processes and find an unexpected breakdown of collinear factorization. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.