Noise Resilience of Successor and Predecessor Feature Algorithms in One- and Two-Dimensional Environments.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-02-06 DOI:10.3390/s25030979
Hyunsu Lee
{"title":"Noise Resilience of Successor and Predecessor Feature Algorithms in One- and Two-Dimensional Environments.","authors":"Hyunsu Lee","doi":"10.3390/s25030979","DOIUrl":null,"url":null,"abstract":"<p><p>Noisy inputs pose significant challenges for reinforcement learning (RL) agents navigating real-world environments. While animals demonstrate robust spatial learning under dynamic conditions, the mechanisms underlying this resilience remain understudied in RL frameworks. This paper introduces a novel comparative analysis of predecessor feature (PF) and successor feature (SF) algorithms under controlled noise conditions, revealing several insights. Our key innovation lies in demonstrating that SF algorithms achieve superior noise resilience compared to traditional approaches, with cumulative rewards of 2216.88±3.83 (mean ± SEM), even under high noise conditions (σ=0.5) in one-dimensional environments, while Q learning achieves only 19.22±0.57. In two-dimensional environments, we discover an unprecedented nonlinear relationship between noise level and algorithm performance, with SF showing optimal performance at moderate noise levels (σ=0.25), achieving cumulative rewards of 2886.03±1.63 compared to 2798.16±3.54 for Q learning. The λ parameter in PF learning is a significant factor, with λ=0.7 consistently achieving higher λ values under most noise conditions. These findings bridge computational neuroscience and RL, offering practical insights for developing noise-resistant learning systems. Our results have direct applications in robotics, autonomous navigation, and sensor-based AI systems, particularly in environments with inherent observational uncertainty.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820235/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25030979","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Noisy inputs pose significant challenges for reinforcement learning (RL) agents navigating real-world environments. While animals demonstrate robust spatial learning under dynamic conditions, the mechanisms underlying this resilience remain understudied in RL frameworks. This paper introduces a novel comparative analysis of predecessor feature (PF) and successor feature (SF) algorithms under controlled noise conditions, revealing several insights. Our key innovation lies in demonstrating that SF algorithms achieve superior noise resilience compared to traditional approaches, with cumulative rewards of 2216.88±3.83 (mean ± SEM), even under high noise conditions (σ=0.5) in one-dimensional environments, while Q learning achieves only 19.22±0.57. In two-dimensional environments, we discover an unprecedented nonlinear relationship between noise level and algorithm performance, with SF showing optimal performance at moderate noise levels (σ=0.25), achieving cumulative rewards of 2886.03±1.63 compared to 2798.16±3.54 for Q learning. The λ parameter in PF learning is a significant factor, with λ=0.7 consistently achieving higher λ values under most noise conditions. These findings bridge computational neuroscience and RL, offering practical insights for developing noise-resistant learning systems. Our results have direct applications in robotics, autonomous navigation, and sensor-based AI systems, particularly in environments with inherent observational uncertainty.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信